
Course overview

10 lectures
Use Linux, macOS or Ubuntu app on Windows
6 labs — use any programming language you are familiar with
Oral exam in zoom. Book at https://calendly.com/forsete
You can book at any time but must have passed all labs before exam.
If you fail, you can try again after at least one week.
One exam booking at a time only.
Office hours there as well. Book as much as you need.
https://jonasskeppstedt.net has videos from 2020 but:

they are not official course material.
they are not being updated and have nothing about lab 4, for instance

It’s now possible to get the book from Swedish amazon (it has new
contents for lab 4)

jonasskeppstedt.net Lecture 1 2023 1 / 39



Course purpose: algorithm design paradigms

Greedy: make decisions based on limited information
Graph search: e.g. breadth first search and Tarjan’s algorithm
Dynamic programming: make decisions based on enumerating all
possibilites — but avoid duplicate work
Divide and conquer: as in quicksort and mergesort
Network flow: model a problem as water pipes and maximize amount
of water flow
Linear programming: inequalities and an objective function to
maximize
Integer linear programming: only integer solutions (e.g. number of
persons or airplanes)

jonasskeppstedt.net Lecture 1 2023 2 / 39



Course purpose: data structures

More about hash tables
More about heaps: Hollow heap

jonasskeppstedt.net Lecture 1 2023 3 / 39



Course purpose: complexity

Time complexity, or execution time, of an algorithm
Complexity of a problem: is it possible to make a fast algorithm for a
problem?
Problem complexity classes: P and NP and NPC
What to do if you cannot find an efficient algorithm?

jonasskeppstedt.net Lecture 1 2023 4 / 39



Worst-case execution time with Ordo

Paul Bachmann introduced the O(n) notation in 1892
In 1976 Knuth suggested its use in algorithm analysis.
Let T (n) be the running time of an algorithm.
n describes the size of the input, e.g. number of array elements to sort
Sometimes more parameters: e.g. n nodes and m edges
Sorting 1000 integers is fast but what happens when n is large?
An example: T (n) = 123n2 + 45n + 678
Ignore lower terms: T (n) = 123n2

Ignore the constant: T (n) = n2

O(n2) is a set of functions with a max running time: c · n2 for n ≥ n0

We say T ∈ O(n2) due to T (n) ≤ c · n2 for n ≥ n0 for some c

Let f (n) = 124 · n and g(n) = 52 · n3.
Quiz: which of f and g are in O(n2)?

jonasskeppstedt.net Lecture 1 2023 5 / 39



Answer plus more

Which of f (n) = 124 · n and g(n) = 52 · n3 are in O(n2)?
Only f ∈ O(n2) since with large n, we have g(n) ≥ c · n2, obviously.
When an algorithm is analyzed we want to find the smallest bound.
If we know the runtime is at least h(n) then we can use Ω(h(n))

So: f /∈ Ω(n2)

and: g ∈ Ω(n2)

and: T ∈ Ω(n2)

With T (n) = 123n2 + 45n + 678, T ∈ Ω(n2) and T ∈ O(n2):
c1n

2 ≤ T (n) ≤ c2n
2

We write T ∈ Θ(n2)

Many use the notation f (n) = O(h(n))

A trend seems to be to use ∈ instead which I prefer so we can use
normal meaning of =

jonasskeppstedt.net Lecture 1 2023 6 / 39



Examples of efficient algorithms: O(nk)

An algorithm with polynomial running time is regarded as efficient.
At least in comparison with slower algortihms.
O(log n): searching in a sorted array
O(n +m): visiting all n nodes in a graph with m edges
O(n log n): sorting an array
O(n2): two for loops
Quiz: you have points in a plane and want to find a pair of points with
minimal distance. How can you do that?

jonasskeppstedt.net Lecture 1 2023 7 / 39



Answer

One can use two for-loops.
For each point, find the distance to every other point.
O(n2)

This is ”efficient” according to theory.
It is too slow in practice for large number of points.
Quiz: how long time would it take to find the closest pairs if there are
109 pairs?
An hour or a day? Any guess?

jonasskeppstedt.net Lecture 1 2023 8 / 39



Examples of inefficient algorithms

O(2n): all subsets of n objects
O(n!): all permutations of n objects

jonasskeppstedt.net Lecture 1 2023 9 / 39



A model of a 4 GHz modern CPU

n n n log n n2 n3 1.5n 2n n!
10 2.5 ns 8.3 ns 25.0 ns 250.0 ns 14.4 ns 256.0 ns 907.2 µs
11 2.8 ns 9.5 ns 30.2 ns 332.8 ns 21.6 ns 512.0 ns 10.0 ms
12 3.0 ns 10.8 ns 36.0 ns 432.0 ns 32.4 ns 1.0 µs 119.8 ms
13 3.2 ns 12.0 ns 42.2 ns 549.2 ns 48.7 ns 2.0 µs 1.6 s
14 3.5 ns 13.3 ns 49.0 ns 686.0 ns 73.0 ns 4.1 µs 21.8 s
15 3.8 ns 14.7 ns 56.2 ns 843.8 ns 109.5 ns 8.2 µs 5 min
16 4.0 ns 16.0 ns 64.0 ns 1.0 µs 164.2 ns 16.4 µs 1 hour
17 4.2 ns 17.4 ns 72.2 ns 1.2 µs 246.3 ns 32.8 µs 1.0 days
18 4.5 ns 18.8 ns 81.0 ns 1.5 µs 369.5 ns 65.5 µs 18.5 days
19 4.8 ns 20.2 ns 90.2 ns 1.7 µs 554.2 ns 131.1 µs 352.0 days
20 5.0 ns 21.6 ns 100.0 ns 2.0 µs 831.3 ns 262.1 µs 19 years
30 7.5 ns 36.8 ns 225.0 ns 6.8 µs 47.9 µs 268.4 ms 1015 years
40 10.0 ns 53.2 ns 400.0 ns 16.0 µs 2.8 ms 5 min 1031 years
50 12.5 ns 70.5 ns 625.0 ns 31.2 µs 159.4 ms 3.3 days 1047 years

100 25.0 ns 166.1 ns 2.5 µs 250.0 µs 3 years 1013 years 10141 years
1000 250.0 ns 2.5 µs 250.0 µs 250.0 ms 10159 years 10284 years huge
104 2.5 µs 33.2 µs 25.0 ms 4 min huge huge huge
105 25.0 µs 415.2 µs 2.5 s 2.9 days huge huge huge
106 250.0 µs 5.0 ms 4 min 8 years huge huge huge
107 2.5 ms 58.1 ms 7 hour 104 years huge huge huge
108 25.0 ms 664.4 ms 28.9 days 107 years huge huge huge
109 250.0 ms 7.5 s 8 years 1010 years huge huge huge

The choice of algorithm is more important than CPU, language or compiler.
But for a given algorithm, they certainly can matter a lot.

jonasskeppstedt.net Lecture 1 2023 10 / 39



From a book by two famous theoretical computer scientists

Sedgewick and Flajolet in ”An Introduction to the Analysis of Algorithms”:

The quality of the implementation and properties of compilers, machine
architecture, and other major facets of the programming environment have

dramatic effects on performance.

jonasskeppstedt.net Lecture 1 2023 11 / 39



Matchings

Most of the rest of this lecture is about matchings and Lab 1
Given two sets X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn}.
A matching M is a set of pairs (xi , yj) such that an x ∈ X and an
y ∈ Y appear in at most one pair.
Matchings can be used for many things:

university admission: n students and n places at universities
medical training: n medical students and n internships
not so realistic but lab 1 is about summer jobs: students and companies

The size of M may be less than n.
If all are matched, it is called a perfect matching.

jonasskeppstedt.net Lecture 1 2023 12 / 39



The Stable Matching Problem

The Swedish National Bank’s Prize in Economic Sciences in Memory
of Alfred Nobel year 2012 was awarded for solving a problem called
the Stable Matching Problem — this problem was called something
else until last year.
Wikipedia and other sources call it the Stable Marriage Problem but it
is an overly simplified model for winning somebody’s heart.
In the videos there is an example from Röde Orm who has fallen in
love with princess Ylva, daughter of King Harald Blåtand.

jonasskeppstedt.net Lecture 1 2023 13 / 39



Lab 1: students and summer jobs

Assume each company has exactly one job offer
Each company has a preferred list of students, sorted in descending
order, and similarly for students.
We assume a student si applies to a company cj which answers yes or
no — if yes then (si , cj) becomes are matched temporarily in a pair
If later another student sk applies to cj and it says yes, a new pair is
created and the old no longer exists
How can we create a perfect matching with no pairs wanting to split
(ie quit the job or reject the student)?

jonasskeppstedt.net Lecture 1 2023 14 / 39



Three famous Swedish companies

Stora 1288 world’s oldest company that is still active forest
Uddeholm 1720 founded as Sunnemo bruk 1640 steel
Spotify 2006

jonasskeppstedt.net Lecture 1 2023 15 / 39



Stable and unstable matchings

Split: a company C in one pair and a student S in another pair
quit/reject their matching and create (S ,C )

who preference lists with most liked first
Harald Stora, Uddeholm
Ingrid Uddeholm, Stora
Stora Harald, Ingrid

Uddeholm Ingrid, Harald
It is easy to create a perfect and stable matching:
S = {(Harald, Stora),(Ingrid,Uddeholm)}
In U = {(Harald, Uddeholm),(Ingrid,Stora)} both pairs want to split
U is called an unstable matching

jonasskeppstedt.net Lecture 1 2023 16 / 39



Stable and unstable matchings

So, a matching is unstable if it contains two pairs (si , cj) and (sk , cl)
such that at least one of the following is true:

si prefers cl and cl prefers si , or
cj prefers sk and sk prefers cj .

A stable matching is a perfect matching with no unstable pairs.
Is it always possible?
We are not trying to find a matching in which every person is paired
with their favorite partner — most likely impossible
The reason the Nobel prize winners worked on this problem was to
make matchings for medical students simple and without chaotic
change requests

jonasskeppstedt.net Lecture 1 2023 17 / 39



The problem

So how can we find a perfect matching which is stable?
Or, how can we efficiently find a matching without any unstable pairs?
We will next show an algorithm for finding stable perfect matchings
We will then analyze its time complexity
After that we will show it is correct

jonasskeppstedt.net Lecture 1 2023 18 / 39



The Gale-Shapley algorithm

procedure GS (S ,C )
/* S is a set of n students and C is a set of n companies */
add each student s ∈ S to a list p
while p ̸= null

s ← take out the first element from p
c ← the company s prefers the most and

s has not yet applied to
if c has no student then

(s, c) becomes a pair
else if c prefers s over its current student sc then

remove the pair (sc , c)
(s, c) becomes a pair
add sc to p

else
add s to p

jonasskeppstedt.net Lecture 1 2023 19 / 39



Sorted preference lists

Recall both students and companies have a sorted list of preferred
matchings
For a student to find the next company to apply to, it needs just to
remember where in the list it currently is.
So the list can be an array and an index variable is used to find c and
then that index variable is incremented. One operation.
But for a company to answer yes or no, it must check who of s and sc
comes first in its preference list.
It seems it must go through its list each time somebody applies which
obviously takes more time. With n students, this search may need n
operations.

jonasskeppstedt.net Lecture 1 2023 20 / 39



Time complexity

Let us assume for now a company can determine if it prefers s over sc
in one operation.
How fast is then the GS algorithm?
We don’t want the exact clock cycles but an expression based on the
input size parameter n
Often we can see that a loop is exectued n iterations and if it has an
inner loop which also is executed n iterations, the operations in the
inner loop clearly are executed n2 iterations, and we have a time
complexity of O(n2)

But with our while-loop, things are more complicated since we can put
back a student in the list!
Will this algorithm even terminate?

jonasskeppstedt.net Lecture 1 2023 21 / 39



Algorithm termination

When it is not obvious to determine the number of iterations, we
should try to find what kind of progress is made each iteration

Lemma
The GS algorithm terminates after at most n2 iterations.

Proof.
Each student has n companies in its preference list, so it can make at most
n applications. In each loop iteration it can apply to one company. There
are n students so we have at most n2 loop iterations.

We assumed an application is a quick operation — just ask and get a
reply — three operations counted roughly
But if a company must check its list each time, we would have a time
complexity of O(n3)

In summary, the algorithm certainly terminates after at most n2

applications
jonasskeppstedt.net Lecture 1 2023 22 / 39



Constant time reply

An obvious way to check which of two students a company prefers is
to search its preference list to see who comes first.
But how can it determine this without searching through her
preference list?
Any suggestions?

jonasskeppstedt.net Lecture 1 2023 23 / 39



Hint for lab 1

Assume a preference list is: 4, 2, 1, 3. Student 4 is most preferred.
The companies should not store students as a preference list.
Instead the position in the above list should be stored for each student.
Thus: 3, 2, 4, 1. This says student number 1 comes at position 3
above, and student number 4 at position 1.
So we store an inverted list.
Then, to compare if student number x is preferable over student
number y , use x and y as index in the inverted list to see who comes
first in the preference list.
The sorted preference list for companies is not needed after you have
read it from a file — only the inverted.

jonasskeppstedt.net Lecture 1 2023 24 / 39



Algorithm output: a stable matching

Facts
A company is matched from the point a student first applies to it.
A company is matched with increasingly preferred students.
A student is matched with decreasingly preferred companies.

Lemma
If a student is free, there remains a company it has not applied to.

Proof.
Assume in contradiction s is free and has already applied to all n
companies. Since every company is matched all n students are also
matched, which is a contradiction since we assumed s is not matched and
there are n students.

jonasskeppstedt.net Lecture 1 2023 25 / 39



Perfect matching

Lemma
The GS algorithm produces a perfect matching.

Proof.
Assume in contradiction the while loop terminates with a student s free due
to it has applied to every company. This cannot happen since it contradicts
the previous lemma. Therefore GS terminates with a perfect matching.

jonasskeppstedt.net Lecture 1 2023 26 / 39



Stable matching

Lemma
The GS algorithm produces a stable matching M.

Motivation — see book for a more formal looking proof.
Assume: M is not stable due to
{(Harald ,Uddeholm), (Ingrid ,Stora)} ⊆ M but Harald and Stora
both want to be matched with each other.
Then we have two cases:

1 If Harald did not apply to Stora then he does not like Stora
Uddeholm comes before Stora in Harald’s preference list

2 If Harald did apply to Stora then Stora does not like him
Stora either said no to Harald or rejected him later for somebody else
Eventually Stora accepted and employed Ingrid

In either way M is not unstable due to Harald and Stora (or any
others)
This may look like an example only but if we treat the above names as
variables, it is a normal proof.
jonasskeppstedt.net Lecture 1 2023 27 / 39



Valid and best company

Consider a matching S produced by GS.
For a student s a company c is valid if (s, c) is a pair in a stable
matching.
The best company c is the company most preferred by s which is
valid for it.

Theorem
The GS algorithm produces the stable matching { (s, c) | c = best(s) }.

In other words, the matching is unique. So it does for instance not
matter in which order the students are put in a list initially.
We will next prove this theorem.

jonasskeppstedt.net Lecture 1 2023 28 / 39



Proof sketch by contradiction

Assume there exists {(s, c)} ⊆ S but c ̸= best(s) for some student.
This s was rejected by best(s) otherwise s would be matched with it
Consider first time a student Harald is rejected by a company c valid
for him
Harald was either rejected when he applied or later
c must be best(Harald)

Why?
because Harald applies according to his preference list
best(Harald) is first valid company who rejected him
So no other valid company could have rejected him before best(Harald)

From that point c is matched with a student sc which c prefers over
Harald (c either was already matched with sc or replaced s with sc).
Let c be Uddeholm and sc be Ingrid

jonasskeppstedt.net Lecture 1 2023 29 / 39



Continued

What we know so far about the preference lists:
Uddeholm: ... Ingrid ... Harald ...
Harald: ... Uddeholm ...
Ingrid: ... Uddeholm ...

Since Uddeholm is a valid matching for Harald, (Harald ,Uddeholm) is
a matching in some other stable matching T

In T , Ingrid is not matched with Uddeholm since
(Harald ,Uddeholm) ∈ T

Assume (Ingrid , Spotify) ∈ T

Which of the following?
Ingrid: ... Spotify ... Uddeholm ...
Ingrid: ... Uddeholm ... Spotify ...

Does Ingrid prefer Spotify or Uddeholm and in that case why?

jonasskeppstedt.net Lecture 1 2023 30 / 39



Continued

Since in S the rejection of Harald by Uddeholm was the first rejection,
Ingrid cannot have been rejected by Spotify before Harald was rejected
Since Ingrid applied to Uddeholm before applying to Spotify in S , it
must be the case that Ingrid prefers Uddeholm over Spotify.
Uddeholm: ... Ingrid ... Harald ...
Harald: ... Uddeholm ...
Ingrid: ... Uddeholm ... Spotify ...

We know that Uddeholm prefers Ingrid over Harald since it rejected
Harald for Ingrid in S .
Recall: {(Harald ,Uddeholm), (Ingrid , Spotify)} ⊆ T

T is unstable due to Uddeholm and Ingrid, and our first assumption
must have been false and therefore we see that Harald is matched
with best(Harald).

jonasskeppstedt.net Lecture 1 2023 31 / 39



Is Gale-Shapley fair?

We have just proved that the GS algorithm finds the best company for
students.

Theorem
The GS algorithm produces the stable matching which is worst for
companies.

We will use contradiction again. S is a stable matching made by GS
Assume (Harald ,Uddeholm) ∈ S and Harald is not the worst for
Uddeholm
That is: not the worst in a stable matching
We know Uddeholm = best(Harald) from the previous theorem
Assume Uddeholm thinks Ingrid is worse than Harald
Consider another matching T with (Ingrid ,Uddeholm) ∈ T

But we know Uddeholm prefers Harald over Ingrid and Uddeholm is
best(Harald)

Thus Uddeholm and Harald make T unstable, i.e. a contradiction
jonasskeppstedt.net Lecture 1 2023 32 / 39



Five representative problems

Interval scheduling / Intervallschemaläggning
Weighted interval scheduling / Viktad intervallschemaläggning
Bipartite graph matching
Independent set / Oberoende mängd
Chess

jonasskeppstedt.net Lecture 1 2023 33 / 39



Interval scheduling: can be solved by a greedy algorithm

The boxes are requests with
start and finish times
Time goes from left to right
We want to find as many
non-overlapping intervals as
possible
This problem can be solved by
making simple ”local” decisions
By local is meant that it is
sufficient to make a decision
without analyzing the
consequences for the next
decision
Topic of Lecture 3

jonasskeppstedt.net Lecture 1 2023 34 / 39



Weighted interval scheduling: dynamic programming

2 4

5 3 4

8 2

3 7

6 5

Each box has a weight, or value
We want to maximize the sum
of values of selected boxes.
It is impossible to just look at a
box to decide if it should be
selected or not
Two cases for each box: (1)
select it, or (2) skip it
We evaluate the optimal value
for both cases and take the best
This may sound time consuming
but we will see a neat trick in
Lectures 6 and 7

jonasskeppstedt.net Lecture 1 2023 35 / 39



Bipartite graph matching

a b

cd

e

f

g

i

j

h

In a bipartite graph the nodes can be partitioned in two sets
No edge between nodes in the same set
We seek a matching of blue and red nodes
Similar to Stable Matching but fewer edges here
If Students = blue nodes and Companies = red nodes there
would have been an edge between every student and company
in Stable Matching
A matching M is a set of edges and a node must be an
endpoint of at most one edge in M

We want to find an as large matching as possible
The algorithm design technique used for this problem is called
network flow and is the topic of Lecture 8

jonasskeppstedt.net Lecture 1 2023 36 / 39



Independent set / Oberoende mängd

Let G (V ,E ) be an undirected graph and S ⊆ V

a b

c d g

he f

S is an independent set if for no nodes u, v ∈ S we have (u, v) ∈ E

The problem is to find an S with maximum size
Two independent sets of size four:

S1 = {b, c , e, g}
S2 = {a, e, f , g}

If you can write a fast program for this you win USD 1,000,000 from
Clay Institute of Mathematics
This is an NP-complete problem and the topic of Lecture 9.

jonasskeppstedt.net Lecture 1 2023 37 / 39



Chess

A requirement for NP-complete problems, is that a proposed solution
to a problem can be checked easily
If somebody has a solution to Independent Set, it is easy to check if
any nodes in S have an edge connecting them in the original graph.
If you play a game of chess against Magnus Carlsen and he tells you
he wins in 10 moves it is not easy to quickly check if that is true
You must consider all moves you can make and all moves he can make
which is more complicated than checking if S is an independent set
Of course, for certain chess games you may only have one valid move
to make in each of these 10 moves
One can also argue that chess with about 10120 possible positions is a
finite game and the optimal move for every position can be stored in a
table, but that table would need more entries than the estimated 1080

atoms in the known universe
Thus, there are problems more complicated than the NP-complete
ones
jonasskeppstedt.net Lecture 1 2023 38 / 39



What to do now?

It is a very good idea to start preparing lab 1
Download the documentation
Read the input format
Start programming
Think through how to fix the constant time reply to an application

jonasskeppstedt.net Lecture 1 2023 39 / 39


