
EDAA35 – Lecture 3
Software Metrics

Martin Höst

Feb. 6, 2020

slide 1 EDAA35 – Lecture 3 Feb. 6, 2020 1 / 50

Outline

1 Introduction

2 Some metrics theory
Ways of categorizing metrics
Scales
GQM
Metrics definition and validation

3 Quality factors

4 Example metrics
Size
Algorithmic cost estimation
Complexity and coupling
Instability
Industrial context

slide 2 EDAA35 – Lecture 3 Feb. 6, 2020 2 / 50

Introduction

Course information

Lab 2 this week (probably takes more than 2 h)

Read both R chapters before the lab, and do the small preparation
assignment

Access to files from home (ssh, sftp, scp, etc):
http://www.ddg.lth.se/perf/unix/unix-x.pdf
> scp STIL@login.student.lth.se:/usr/local/cs/EDAA35/data.txt .

Lab 2a hint: in a loop go through every column and add to a new
data frame

Lab 2b hints: choose right separator in read.csv and
stringsAsFactors=F, add own column names, tapply probably useful

Lecture 27 Feb in E:A instead

slide 3 EDAA35 – Lecture 3 Feb. 6, 2020 3 / 50

Introduction

Software metrics

”You cannot control what you cannot measure” (DeMarco)

Project tracking – understanding where you are

Understanding quality during development

Understanding performance of different methods/tools/...

As a basis for process improvement

As a basis for empirical studies

Understanding the quality of products

slide 4 EDAA35 – Lecture 3 Feb. 6, 2020 4 / 50

Introduction

Some terms informally

Metric – definition of how to measure the attribute of interest, i.e.
M(A)

Measurement – what you do in order to get a number for an attribute
in the real world, i.e. val = M(A)

a basic requirement on metrics is that they should preserve the
empirical observation, i.e. if A is bigger than B in the real world then
M(A) > M(B)

slide 5 EDAA35 – Lecture 3 Feb. 6, 2020 5 / 50

Introduction

Application of metrics

1 Define / decide metrics to use

2 Validate metrics

3 Collect metrics

4 Analyze metrics

5 Draw conclusions

slide 6 EDAA35 – Lecture 3 Feb. 6, 2020 6 / 50

Introduction

Example: Code inspection statistis

Total KLOC inspected: 27

Average preparation rate: 194 LOC/h

Average inspection rate: 172 LOC/h

Total faults detected per KLOC: 106

Fenton, Pfleeger, Software Metrics, 2:nd ed., PWS Publishing Company, 1997

slide 7 EDAA35 – Lecture 3 Feb. 6, 2020 7 / 50

Introduction

Example: Size metrics from OSS project

Code Metric 2004v 2008v

LOC : lines of code 840,502 1,442,225

ELOC : effective LOC 650,055 1,110,261

C : # comment lines 484,349 630,635

TCC : total complexity 167,753 300,493

FFC : total number of file functions 15,588 45,216
Oručević-Alagić, Höst, A Case Study on the Transformation From Proprietary to Open Source Software, OSS, 2010

slide 8 EDAA35 – Lecture 3 Feb. 6, 2020 8 / 50

Introduction

Example: Ease of introduction of XP practices

Svensson, Höst, Introducing an Agile Process in a Software Maintenance and Evolution Organization, CSMR, 2005

slide 9 EDAA35 – Lecture 3 Feb. 6, 2020 9 / 50

Some metrics theory Ways of categorizing metrics

What to measure?

Products e.g. size of code documents, modularity of requirements
specifications, complexity of design, coverage level of test
data,...

Processes e.g. time of construction activities, number of faults found in
test phase, effort in design phase,..

Resources e.g. price of software components, age of personnel,
experinece of personnel,...

slide 10 EDAA35 – Lecture 3 Feb. 6, 2020 10 / 50

Some metrics theory Ways of categorizing metrics

Internal / external attributes

Internal attributes of a product, process, or resource are those which can
be measured purely in terms of the product, process, or
resource itself. Examples: size, modularity, age, price,...

External attributes of a product, process, or resource are those which can
only be measured with respect to how the product, process,
or resource relates to its environment. Examples:
comprehensability, reliability, cost-effectiveness, productivity,
experience,...

Often you measure internal attributes when you would like to measure
external.

slide 11 EDAA35 – Lecture 3 Feb. 6, 2020 11 / 50

Some metrics theory Ways of categorizing metrics

Objective or subjective?

Objective e.g. size of code documents measured with unix ”wc”, time
of construction activities taken from time reporting system,
complexity of modules measured with ”cyclomatic
compexity”...

Subjective e.g. grading of modules wrt complexity on Likert scale,
ranking of third party components wrt understandability of
API,...

slide 12 EDAA35 – Lecture 3 Feb. 6, 2020 12 / 50

Some metrics theory Ways of categorizing metrics

Different scales

Nominal scale

Ordinal scale

Interval scale

Ratio scale

slide 13 EDAA35 – Lecture 3 Feb. 6, 2020 13 / 50

Some metrics theory Ways of categorizing metrics

Different scales – some examples

Nominal scale: type of fault (data, function, interface,...)

Ordinal scale: criticality of fault (class A, B, C, etc)

Interval scale:

Ratio scale: number of faults, debugging time,...

slide 14 EDAA35 – Lecture 3 Feb. 6, 2020 14 / 50

Some metrics theory Scales

Different scales – defining relations

Nominal scale: =

Ordinal scale: =, >

Interval scale: =, >, ratio of intervals

Ratio scale: =, >, ratio of intervals, ratio of values

slide 15 EDAA35 – Lecture 3 Feb. 6, 2020 15 / 50

Some metrics theory Scales

Different scales – ”allowed” transformations

Nominal scale: labeling, classifying entities

Ordinal scale: M(x) > M(y)→ M ′(x) > M ′(y)

Interval scale: M ′ = aM + b

Ratio scale: M ′ = aM

slide 16 EDAA35 – Lecture 3 Feb. 6, 2020 16 / 50

Some metrics theory Scales

Different scales – examples of ”allowed” statistics

Nominal scale: mode, frequency

Ordinal scale: mode, frequency, median, correlation (Spearman)

Interval scale: mean, standard deviation, correlation (Pearson)

Ratio scale: median, mean, standard deviation, geometric mean
(
∏n

i=1 ai)
1/n

Fenton, Pfleeger, 1997

slide 17 EDAA35 – Lecture 3 Feb. 6, 2020 17 / 50

Some metrics theory GQM

Metrics challenges

Data collected in different projects should be comparable

Data collected should be reliable and of high quality

People do not want to collect data that is not used

⇒
Avoid ”data cemetaries”

Collect only the data that you really need (but all data that you need)

Understand and record the context in which data is collected

Product
Team
Process
...

Quality assurance for data collection

slide 18 EDAA35 – Lecture 3 Feb. 6, 2020 18 / 50

Some metrics theory GQM

Goal Question Metrics (GQM)

Goals: What is the organisation
trying to achieve? The objective
of process improvement is to
satisfy these goals

Questions: Questions about
areas of uncertainty related to
the goals. You need process
knowledge to derive these

Metrics: Measurements to be
collected to answer the
questions

slide 19 EDAA35 – Lecture 3 Feb. 6, 2020 19 / 50

Some metrics theory GQM

GQM goal template

Analyze object(s) of study
for the purpose of purpose
with respect to their quality focus
from the point of view of the perspective
in the context of context

slide 20 EDAA35 – Lecture 3 Feb. 6, 2020 20 / 50

Some metrics theory GQM

GQM goal examples

Object(s) of study the product or process investigated, e.g. test phase,
inspection process, requirements document,...

Purpose improvement, understanding,...

Quality focus i.e. reliability, maintainability, cost,...

Perspective customer, project leader, senior management,...

Context project, organization,...

slide 21 EDAA35 – Lecture 3 Feb. 6, 2020 21 / 50

Some metrics theory GQM

Example (simplified)

Analyze IT system
For the purpose of improvement
With respect to dependability
...

What is the reliability? How is the system used?

Number of faults Usage time Purpose of system Failure effect

....

....

slide 22 EDAA35 – Lecture 3 Feb. 6, 2020 22 / 50

Some metrics theory GQM

GQM abstraction sheet (an example of support)

slide 23 EDAA35 – Lecture 3 Feb. 6, 2020 23 / 50

Some metrics theory Metrics definition and validation

Metrics definition and validation

1 Check definitions, scales, etc

2 Compare definition of metric to understanding of phenomena

3 Compare collected empirical data to understanding of phenomena

slide 24 EDAA35 – Lecture 3 Feb. 6, 2020 24 / 50

Some metrics theory Metrics definition and validation

Example: tree impurity of designs

G' G

slide 25 EDAA35 – Lecture 3 Feb. 6, 2020 25 / 50

Some metrics theory Metrics definition and validation

Example: formulate understanding of phenomena

1 m(G) = 0 if and only if G is a tree

2 m(G) > m(G ′) if G differs from G ′ only by the insertion of an extra
edge

3 Let N denote #nodes and E #edges. If N > N ′ and
E − N + 1 = E ′ − N ′ + 1 then m(G) < m(G ′) 1

4 m(G) ≤ m(KN) where N is the number of nodes in G and KN is a
complete graph with N nodes

1Number of ”extra edges” is the same but G is larger than G ′

slide 26 EDAA35 – Lecture 3 Feb. 6, 2020 26 / 50

Some metrics theory Metrics definition and validation

Example: suggest metric

m(G) =
Number of extra edges

Max number of extra edges

1. m(G) = 0 if and only if G is a tree:

m(G) = 0
Max number of extra edges = 0

2. m(G) > m(G ′) if G differs from G ′ only by the insertion of an extra
edge:

K + 1

Max number of extra edges
>

K

Max number of extra edges
K + 1 > K

3. and 4. in the same way...

slide 27 EDAA35 – Lecture 3 Feb. 6, 2020 27 / 50

Quality factors

Quality factors

There are a number of lists of quality requirements

McCall
ISO 9126
IEEE 830
...

slide 28 EDAA35 – Lecture 3 Feb. 6, 2020 28 / 50

Quality factors

ISO 9126 (selected parts)

Functionality

Accuracy, Security,
Interoperability, Suitability,
Compliance

Reliability

Maturity, Fault tolerance,
Recoverability

Usability

Understandability,
Learnability, Attractiveness

Efficiency

Time behaviour, Resource
utilization

Maintainability

Testability, Changeability,
Analyzability

Portability

Adaptability, Installability,
Conformance

slide 29 EDAA35 – Lecture 3 Feb. 6, 2020 29 / 50

Example metrics Size

Size

One of the most often used metrics

Basis for cost estimation

Also used as normalization for other metrics, e.g. reliability

Often measured as lines of source code (LOC)

slide 30 EDAA35 – Lecture 3 Feb. 6, 2020 30 / 50

Example metrics Size

LOC – some things to think about

Differences between different programming languages

How to measure?

blank lines?
comment lines?
broken lines?
count ”{”, ”}”, etc?
...
⇒

Coding standard can help
Count statements instead? (or ”;”?)

What to measure: new, modified, deleted, reused,...

slide 31 EDAA35 – Lecture 3 Feb. 6, 2020 31 / 50

Example metrics Size

A small assignment

Assume you were given a piece of software (a word processor) that
was being developed and currently was in the acceptance test phase,

and you were given the task to measure “reliability” in terms of time
between failures.

What would you measure?

How would you measure?

slide 32 EDAA35 – Lecture 3 Feb. 6, 2020 32 / 50

Example metrics Size

A small assignment 2

Assume you would like to measure how difficult a piece of code is to
understand.

What would you measure?

How would you measure?

slide 33 EDAA35 – Lecture 3 Feb. 6, 2020 33 / 50

Example metrics Algorithmic cost estimation

Algorithmic methods

Basic idea:

Estimations based on historical data in the form of measurements from
earlier projects typically in the form of effort = c × sizek

gives an ”objective” estimate

a good experience base and a good size estimate gives a good
estimate

...but not easy to find a good experience base...

...and not easy to get a good size estimate...

slide 34 EDAA35 – Lecture 3 Feb. 6, 2020 34 / 50

Example metrics Algorithmic cost estimation

The original COCOMO model (COCOMO81)

Formula

Effort = c × Sizek

Constants

System type c k

Organic 2.4 1.05
Semi-detached 3.0 1.12
Embedded 3.6 1.20

...derived by looking at a lot of old projects

Deprecated now, but the basic idea is still valid

slide 35 EDAA35 – Lecture 3 Feb. 6, 2020 35 / 50

Example metrics Algorithmic cost estimation

An early size measure: Albrecht function points (FP)

Low Medium High

External input type 3 4 6
External output type 4 5 7
Logical internal file type 7 10 15
External interface file type 5 7 10
External inquiry type 3 4 6

UFP =
∑15

i=1(Number of items of weight i × weighti)

FP = UFP× ”technical complexity factor”

slide 36 EDAA35 – Lecture 3 Feb. 6, 2020 36 / 50

Example metrics Algorithmic cost estimation

UFP to SLOC Conversion Ratios

Language Ratio (SLOC / UFP)

Assembly 320
C 128
C++ 55
Java 53
PERL 27
Prolog 64

from COCOMO II Model Definition Manual

slide 37 EDAA35 – Lecture 3 Feb. 6, 2020 37 / 50

Example metrics Algorithmic cost estimation

Assume all weights are ”medium”

A = # ext input = 2 (doc, own dict)

B = # ext out = 2 (report, # words)

C = # queries = 1 (# words?)

D = # ext files = 2 (doc, own dict)

E = # int files = 1 (dict)

FP = 4A + 5B + 4C + 7D + 10E = 37

37FP⇒ 37× 53 ≈ 2000 LOC (Java)

slide 38 EDAA35 – Lecture 3 Feb. 6, 2020 38 / 50

Example metrics Complexity and coupling

Complexity

We want to measure the complexity of a program in a relevant way...

E.g. in estimation and evaluation of maintainability

Several attempts have been made

based on the code
based on the design

slide 39 EDAA35 – Lecture 3 Feb. 6, 2020 39 / 50

Example metrics Complexity and coupling

McCabe’s cyclomatic complexity

Represent the program as a flow
graph

statements as nodes (n nodes)
flows as edges (e edges)

Calculate cyclomatic complexity
as the the number of linearly
independent paths
v(F) = e − n + 2

a <- 1:10

while (length(a) > 5) {

print(a)

a <- a[1:(length(a)-1)]

}

v(F) = 4-4+2 = 2

slide 40 EDAA35 – Lecture 3 Feb. 6, 2020 40 / 50

Example metrics Complexity and coupling

Tool example: JavaNCSS

slide 41 EDAA35 – Lecture 3 Feb. 6, 2020 41 / 50

Example metrics Complexity and coupling

Coupling and cohesion

Coupling: how coupled two modules are – you don’t want too much

Cohesion: how cohesive one module is – that is good, you want that

slide 42 EDAA35 – Lecture 3 Feb. 6, 2020 42 / 50

Example metrics Complexity and coupling

Coupling (design)

x and y two modules. Example ordinal measure of coupling:

1 x and y have no communication

2 x and y communicate by simple parameters

3 x and y use the same record type as parameter

4 x passes a parameter ty y with the intention of controlling its behavior

5 x and y refer to the same global data

6 x refers to the inside of y

Fenton, Pfleeger, 1997

slide 43 EDAA35 – Lecture 3 Feb. 6, 2020 43 / 50

Example metrics Complexity and coupling

Cohesion (design)

1 Coincidental

2 Logical, e.g., ”if A then function 1 else function 2”)

3 Temporal, e.g., ”read data”, ”analyse”, ”present result”

4 Procedurally, i.e. as temporal with related action

5 Communicational, around one data set

6 Functional: all elements of one functionality in one module AND all
elemnts in the module are related to that functionality

7 Informational, e.g. all attributes and methods strongly interdependent
and essential to the object

Pfleeger, Atlee, Software Engineering, 4:h ed., Pearson, 2010

slide 44 EDAA35 – Lecture 3 Feb. 6, 2020 44 / 50

Example metrics Complexity and coupling

Object oriented metrics (Chidamber och Kemerer)

WMC: weighted methods per class (weighted for complexity)

DIT: depth of inheritance tree

NOC: number of children (number of immediate successor)

CBO: coupling between object classes (number of classes to which
the class is coupled)

RFC: response for class (number of local methods plus number of
methods called by local methods, i.e. RFC = |RS | where
RS = {M}

⋃
∀i{Ri})

LCOM: lack of cohesion metric (based on number of disjoint sets of
local methods)

Fenton, Pfleeger, 1997

slide 45 EDAA35 – Lecture 3 Feb. 6, 2020 45 / 50

Example metrics Instability

Metrics of ”instability” (Martin)

For one package:

Ce = # classes depending on classes in other packages

Ca = # classes in other packages depending on its classes

I = Ce
Ca+Ce

I = 0: maximum stability
(no classes in package depend on classes in other packages, but
classes outside package depending on classes in package)

I = 1: maximum instability
(no classes outside package depending on classes in package, but
classes in packe depending on classes outside package)

slide 46 EDAA35 – Lecture 3 Feb. 6, 2020 46 / 50

Example metrics Instability

”Instability” cont.

For one package:

A = # abstract classes
classes

”main sequence”: I + A = 1

slide 47 EDAA35 – Lecture 3 Feb. 6, 2020 47 / 50

Example metrics Instability

Tool example: JDepend

slide 48 EDAA35 – Lecture 3 Feb. 6, 2020 48 / 50

Example metrics Industrial context

Examples of CMM questions (level 2) related to software
metrics

1.1.3 – Does the SQA function have a management reporting channel
separate from the software development project management?

2.1.14 – Is there a formal procedure used to make estimates of
software size?

2.1.16 – Is there a formal procedure used to make estimates of
software cost?

2.2.4 – Are statistics on software software code and test errors
gathered?

slide 49 EDAA35 – Lecture 3 Feb. 6, 2020 49 / 50

Example metrics Industrial context

Software process improvement

1. Assess the current process

2. Execute the changed processes

3. Analyse the result

4. Iterate to
improve
continuously

and plan changes

slide 50 EDAA35 – Lecture 3 Feb. 6, 2020 50 / 50

	Introduction
	Some metrics theory
	Ways of categorizing metrics
	Scales
	GQM
	Metrics definition and validation

	Quality factors
	Example metrics
	Size
	Algorithmic cost estimation
	Complexity and coupling
	Instability
	Industrial context

