
1 abc
2 defgh
1 1

1.4 Redo the previous exercise without the assumptions of maximum word length or
number of words.

1.5 Implement an RPN calculator, which reads one character at a time from stdin
using getchar, see Section 13.20.7.6, page 540. Your program should handle integers and
the binary operators +, -, *, and /. Your program should process one line at a time and
print the (only) value on the stack when a new-line character is seen. Your stack should
have space for exactly 10 numbers and your program must check for the following errors:

• invalid character (such as !),

• no space left on your stack when you need to push a number,

• zero or one number on the stack when you need to pop two numbers for a binary
operator,

• divide by zero,

• an empty stack when you see a new-line character,

• and two or more numbers when you see a new-line character.

You do not have to consider overflow. When you encounter an error, print an error message
and skip the rest of that line.

You should terminate the program by typing ctrl-D at the beginning of a new line. In
UNIX ctrl-D means end of file, or EOF. If we first push x and then y and next see �, we
should calculate x � y, i.e. the input 2 3 - should result in the output -1. At a new-line
character, print output such as: line 1: 42.

Hint 1: The function getchar returns an int and you should not store the value read
in a char since a char may be an unsigned integer and the return value EOF normally is
a negative number which typically will lead to an infinite loop. The source code that can
be downloaded from the book’s site has a makefile which specifies that char should be an
unsigned number (in order to test your code for this error).

Hint 2: To print the two characters \n you can use a string "\\n".
Hint 3: To check if a character is a number, use isdigit, see Section 13.3.1.5, page

450, and to check if it is e.g. a plus sign, use the constant ’+’ (using the ASCII number 43
in source code is not portable and generally a bad idea).

Hint 4: In this exercise, there is no need to use pointers.
See rpn.zip at the book’s site. Implement you calculator in a file rpn.c and type make,

This will test your program with the input below, which should result in the output found
on the next page.

2 3 +
4 5 -
124 1000 * 36 +

119



6 7 8 9*+-
60 4 /
2 1000 * 10 5 + + 19 100 * 8 10 * 5 + + -
1 2 3 4 5 6 7 8 9 10 +++++++++
1 2

1 0 /
1 2 3 4 1 2 3 4 5 6 7 ++++++++++
1 +
!

Expected output:

line 1: 5
line 2: -1
line 3: 124036
line 4: -73
line 5: 15
line 6: 30
line 7: 55
line 8: error at \n
line 9: error at \n
line 10: error at /
line 11: error at 7
line 12: error at +
line 13: error at !

1.6 Write a program which takes an integer argument n from the command line and
prints out the exact value of n!, for any 1 n 100.

1.7 Write a program which can multiply polynomials. Your program should be able to
multiply polynomials such as the following:

(x2 � 7x + 1)⇥ (3x + 2)

(x10000000 + 2)⇥ (2x

2 + 3x + 4)

The following header file declares the opaque type poly_t as an incomplete struct
type. You need to define it in a file poly.c. See poly.zip at the book’s site.

#ifndef poly_h
#define poly_h

typedef struct poly_t poly_t;

poly_t* new_poly_from_string(const char*);
void free_poly(poly_t*);

120



poly_t* mul(poly_t*, poly_t*);

void print_poly(poly_t*);

#endif

Use a test program such as the following:

#include <stdio.h>

#include "poly.h"

static void poly_test(char* a, char* b)
{

poly_t* p;
poly_t* q;
poly_t* r;

printf("Begin polynomial test of (%s) * (%s)\n", a, b);

p = new_poly_from_string(a);
q = new_poly_from_string(b);

print_poly(p);
print_poly(q);

r = mul(p, q);

print_poly(r);

free_poly(p);
free_poly(q);
free_poly(r);

printf("End polynomial test of (%s) * (%s)\n\n\n", a, b);
}

int main(void)
{

poly_test("x^2 - 7x + 1", "3x + 2");
poly_test("x^10000000 + 2", "2x^2 + 3x + 4");

return 0;
}

121



The output from this program should be:

Begin polynomial test of (x^2 - 7x + 1) * (3x + 2)
x^2 - 7 x + 1
3 x + 2
3 x^3 - 19 x^2 - 11 x + 2
End polynomial test of (x^2 - 7x + 1) * (3x + 2)

Begin polynomial test of (x^10000000 + 2) * (2x^2 + 3x + 4)
x^10000000 + 2
2 x^2 + 3 x + 4
2 x^10000002 + 3 x^10000001 + 4 x^10000000 + 4 x^2 + 6 x + 8
End polynomial test of (x^10000000 + 2) * (2x^2 + 3x + 4)

1.8 Write a program which finds the longest word in its input (stdin). Here we define
a word to be a sequence of characters for which isalpha returns a nonzero value. See
word.zip at the book’s site.

122


