
Contents of Lecture 7

The C Library

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 1 / 39

js@cs.lth.se

The C Standard Library

There are 24 header files in C99 and 29 in C11.
We will go through some of the more important header files.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 2 / 39

js@cs.lth.se

<assert.h>

To check that your assumptions hold during execution, you can do as
follows:

#include <assert.h>

void insert_first(list_t** list, void* data)
{

assert(*list != NULL);

/∗ . . . ∗/
}

It is useful during development and can be used for consistency checks.
Compiling with cc -DNDEBUG will disable the test. Therefore don’t do:

assert((fp = fopen(name, "r")) != NULL);

assert can be implemented as shown in the book on page 418.
Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 3 / 39

js@cs.lth.se

<assert.h>

If NDEBUG is not defined, the expression is evaluated, and if it is
nonzero, nothing happens.
If the expression is false, an error message is printed and the abort
function is called.
Suppose you want to check that a pointer is 8 bytes:

assert(sizeof(void*) == 8);

How can you check that during compilation?

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 4 / 39

js@cs.lth.se

Why is the following wrong?

#if sizeof(void*) != 8
#error the program assumes a pointer is 8 bytes.
#endif

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 5 / 39

js@cs.lth.se

Static assertion

Since the preprocessor knows nothing about the sizeof operator we
must do something else.
C11 has a new construct for it called _Static_assert, but we can
easily define a macro.
The idea is:

int array[sizeof(void*) == 8 ? 1 : -1];

If the expression is false, we would declare an array with −1 elements
which the compiler must complain about.
To avoid:

actually declaring an array and waste memory,
having to invent a different array name every time

... we can do as on page 359, which instead of an array variable
declares an array typedef (wastes no memory) and uses token
concatenation (##) to make the line number part of the name.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 6 / 39

js@cs.lth.se

<ctype.h>

<ctype.h> contains classification functions such as isdigit.
They take an int parameter and return a nonzero value to indicate
truth.
It is wrong to write:

if (isdigit(c) == 1)
/∗ . . . ∗/

Since the return value equally well could be 2 if c is a digit.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 7 / 39

js@cs.lth.se

<fenv.h>

Defines macros for exceptions:

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW

Defines macros for rounding modes:

FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 8 / 39

js@cs.lth.se

Exceptions

The exceptions can be set both by hardware and software.
When a math function detects an invalid input argument it should set
the FE_INVALID bit in the processor’s floating point status register.
There are functions for fetching a copy of the floating point status
register and for testing and clearing bits, and other operations — see
below.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 9 / 39

js@cs.lth.se

<errno.h>

C has traditionally stored error codes in a variable called errno.
There are three standard errors:

EDOM
ERANGE
EILSEQ

The first two refer to math errors: an argument was not in the domain
of the function and the return value could not be represented in the
range of the return type.
The EILSEQ is used with an invalid multibyte character sequence.
Operating systems define others such as

ENOENT for ”No such file or directory”, and
EPERM for ”Permission denied”.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 10 / 39

js@cs.lth.se

Using errno

We should set errno to zero before any call which might fail such as
opening or removing a file and some math functions.
For example:

#include <errno.h>
#include <stdio.h>

int main(void)
{

errno = 0;
if (remove("/") == -1)

perror("cannot remove \"/\"");
}

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 11 / 39

js@cs.lth.se

errno

errno behaves as if it was declared as a global variable int errno;
For multi-threaded programs this doesn’t work very well — due to
data-races.
Each thread gets its own copy of errno and this typically is
implemented as:

int* __get_errno_for_current_thread(void)
{

return ¤t_thread->errno;
}

#define errno (*__get_errno_for_current_thread())

Then we can use it as:

errno = 0;
/∗ . . . ∗/

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 12 / 39

js@cs.lth.se

errno and C11

With C11 we can instead declare errno using:

_Thread_local int errno;

This way each thread gets its own copy of errno.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 13 / 39

js@cs.lth.se

Reporting errors from libraries

errno is intended for use by system libraries such as the API’s for
performing system calls and Pthread libraries.
System calls are special function calls provided by the operating
system which means Windows has one set of system calls and UNIX,
including MacOS X, Linux and AIX, have other sets.
To learn more about operating systems and in particular Linux, see the
course EDA050.
To report errors from your own libraries, it is often a good idea to
define an enum with the different error codes.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 14 / 39

js@cs.lth.se

<math.h>

Compile with -lm at the end of the command: gcc a.c -lm

Traditionally errno is used but C99 allows math exceptions to be
tested in a different way.
We need to check which way the library reports math errors using
math_errhandling:

errno = 0;
sqrt(-1);

if (math_errhandling & MATH_ERRNO)
/∗ . . . ∗/

if (math_errhandling & MATH_ERREXCEPT)
/∗ . . . ∗/

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 15 / 39

js@cs.lth.se

Math errors reported with errno

if (math_errhandling & MATH_ERRNO) {
if (errno == EDOM)

puts("EDOM");
}

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 16 / 39

js@cs.lth.se

Math errors reported as exceptions

if (math_errhandling & MATH_ERREXCEPT) {
except = fetestexcept(FE_ALL_EXCEPT);
if (except & FE_INVALID)

puts("FE_INVALID");
}

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 17 / 39

js@cs.lth.se

<inttypes.h>

Using <stdint.h> we can declare exact width integers such as
int32_t.
How should we print them?

int32_t a;

printf("a = %d\n", a); // not portable
printf("a = %ld\n", a); // not portable

What should we do?

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 18 / 39

js@cs.lth.se

<inttypes.h>

This header file declares macros which are strings that can be used.
For example:

#include <inttypes.h>

int32_t a;

printf("a = %" PRId32 " \n", a);

<inttypes.h> includes <stdint.h>.
Stricly speaking this is also not portable since it is implementation
defined whether there is an int32_t but if there is, this is how to
print it.
For instance a DSP-processor with 24-bit int may not have int32_t.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 19 / 39

js@cs.lth.se

<setjmp.h>

To jump to a label L we use goto L;

In C we can also jump from one function to another.
Consider:

void g(void) { /∗ . . . ∗/ }
void f(void) { g(); }
int main(void)
{

/∗ . . . ∗/
f();

}

Usually g returns to f which returns to main.
If we wish we can return from g directly to main.
Instead of return we use longjmp.
longjmp has an ever worse reputation than goto but can be useful.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 20 / 39

js@cs.lth.se

What is the context of an executing thread?

Program counter or PC
Registers
To make a jump to a function f , that function must already have an
allocated stack frame and its program counter and registers must have
been saved.
Thus e.g. main cannot jump into the middle of any function — a call
to the jumped-to function must already be active such as the call to f
above.
There is a type jmp_buf in which the PC and registers are saved.
A jump is performed by loading all registers and finally the PC from
such a jmp_buf variable.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 21 / 39

js@cs.lth.se

Non-local jumps with setjmp and longjmp

To make a non-local jump, two operations are needed:
Initialize the jmp_buf variable — using setjmp.
Calling the function longjmp with the jmp_buf variable as one of the
parameters.
The call to longjmp will result in another return from setjmp!
To distinguish the initialization call of setjmp and the returning jump,
setjmp returns zero when called to initialize a jmp_buf variable and
the second paremeter to longjmp otherwise.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 22 / 39

js@cs.lth.se

Typical usage

#include <setjmp.h>

jmp_buf buf;

int main(void)
{

switch (setjmp(buf)) {
case 0: /∗ i n i t i a l i z a t i o n . ∗/ break;
case 1: /∗ from longjmp . ∗/ break;
}

}

void g(void)
{

if (must_stop())
longjmp(buf, 1);

}

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 23 / 39

js@cs.lth.se

Remarks

Almost always non-local jumps are not needed.
In a chess program which has found a winning move it can be
appropriate to terminate a deep recursive search using longjmp.
Functions with non-local jumps are very annoying to optimizing
compilers and often result in slower code.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 24 / 39

js@cs.lth.se

<signal.h>

A signal is a way of notifying a running program that something has
happened.
Signal Example cause Default effect
SIGABRT abort(); Terminate the process
SIGFPE Implementation defined Terminate the process
SIGILL Illegal instruction Terminate the process
SIGINT Ctrl-C Terminate the process
SIGSEGV Invalid address Terminate the process
SIGTERM kill <pid> Terminate the process

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 25 / 39

js@cs.lth.se

Some UNIX-specific signals

Signal Cause Default effect
SIGSTOP Ctrl-Z Stop the process
SIGSTOP kill -SIGSTOP <pid> Stop the process
SIGCONT kill -SIGCONT <pid> Resume the process
SIGBUS eg non-alignad memory access Terminate the process
SIGKILL kill -SIGKILL <pid> Terminate the process
SIGKILL kill -9 <pid> Terminate the process

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 26 / 39

js@cs.lth.se

Common use

To get informed about a signal, sent from the operating system, we
must register a so called signal handler.
A signal handler is simply a function that the operating system runs
for us.
If we have not registered a signal handler before a signal is received
our program usually is terminated, i.e. that is the default action.
To register a signal handler catch_ctrl_c for SIGINT we can do:

#include <signal.h>

void catch_ctrl_c(int s) { /∗ . . . ∗/ }

int main(void)
{

signal(SIGINT, catch_ctrl_c);
}

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 27 / 39

js@cs.lth.se

The signal function

The signal function tells the operating system which function to call
instead of terminating our program.
The function signal returns the previously registered function for a
particular signal number.
The declaration of the signal is perhaps confusing to read:

void (*signal(int signum, void (*func)(int)))(int);

The two parameters to signal are signum and func.
The * before signal is there due to the return value is a pointer (to a
function).
Since the same function can be signal handler for different signals, the
int parameter of the signal handler specifies which signal occurred.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 28 / 39

js@cs.lth.se

Delivering a signal

When an event happens which triggers a signal, the operating system
blocks additional instances of the same signal to avoid having the
signal handler being invoked multiple times for the same signal.
This blocking is removed when the signal handler returns to the
operating system.
After that, the operating system will let the program resume execution.
What happens if the signal handler instead of returning makes a
longjmp?
The signal will remain blocked since the operating system still thinks
the signal handler has not returned.
To learn more about controlling signals — see Lab 3 in EDA050
Operating systems.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 29 / 39

js@cs.lth.se

<stdlib.h>

To convert a number in string to an integer, the function strtol is
useful.
It takes three paramets:

A pointer to a string: char* s
An optional pointer to a pointer to a string: char** end
The base, 2-36 — or zero and then the base is inferred from the string.

The function sets *end to point to the first character after the
number — unless end is a null pointer.
For example:

int a;
char* end;

a = strtol("119", &end, 2);

a is set to 3 and end to point to the 9.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 30 / 39

js@cs.lth.se

<string.h>

To split a string into parts, called tokens, the function strtok can be
used.
It is used in two phases:

First two parameters are provided:

char* s;
char a[] = "a string. hi: there";
char* sep = " :.";

s = strtok(a, sep);

The first parameter must be modifiable.
The second parameter contains a set of characters which are used to
separate tokens.

If the first parameter is null, search continues in the previously used
string.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 31 / 39

js@cs.lth.se

strtok example

For example:

char* s;
char a[] = "a string. hi: there";
char* sep = " :.";

s = strtok(a, sep);
while (s != NULL) {

printf("%s ", s);
s = strtok(NULL, sep);

}

The output will be: a string hi there
The returned string assigned to s is null-terminated!
That means strtok modifies the first non-null parameter which
therefore must be modifiable.
Using char* s= "hello there"; may result in a read-only string!

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 32 / 39

js@cs.lth.se

Sorting array of int using qsort

Sort using Quicksort (unstable sorting algorithm)
Four parameters to qsort:

an array (i.e. a pointer to the first element)
number of elements
size of each element
a comparison function

The comparison function takes two void pointers: const void*
The first thing to do in the comparison function is to assign the
pointers to non-void pointers:
int compare(const void* ap, const void* bp)
{

const int* a = ap;
const int* b = bp;

return *a - *b;
}

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 33 / 39

js@cs.lth.se

Buffer overflows

A buffer overflow means array index out-of-bounds errors.
Checking that an array index is within the array bounds is not done in
C, as in Java.
The checking is only useful for programs with bugs.
To avoid such errors, the following simple rule is sufficient:

Don’t trust untrusted data.
In other words, make a sanity check for all input, and use range
checking library functions.
When there is a risk for overflow: check it explicitly.
For C: make the calculation (how depends on the type).
Java does also not report errors on overflow (and cannot check it for
floating point values).

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 34 / 39

js@cs.lth.se

An example: sprintf and snprintf

Both functions behave as printf but put their output in a buffer
pointed to by the first parameter.
The output is null terminated.
sprintf assumes the buffer is sufficiently large.
The second parameter of snprint specifies the buffer size.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 35 / 39

js@cs.lth.se

Never use gets

The function gets reads the next line of input from stdin and copies
it to a buffer supplied to gets.
No length check is done. Don’t use gets. It may disappear from C.
Use fgets instead which takes a buffer, a size, and a FILE pointer as
parameters.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 36 / 39

js@cs.lth.se

Another example: strcpy and strncpy

strcpy copies the string pointed to by the second parameter into
memory pointed to by the first parameter upto and including the
terminating null byte.
strncpy does the same but copies at most n bytes.
Warning: strncpy may skip the null byte!
Similar situation for strcat which appends a string.
Use strncat instead.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 37 / 39

js@cs.lth.se

Compiler protection against stack buffer overflow

Buffer overflows for stack allocated arrays can often be detected by
letting the compiler put ”canaries” with special values after such arrays.
The term comes from mines when canary birds where used to detect
toxic gases.
If the value of the canary has changed, it is likely due to a buffer
overflow (or some other write through an invalid pointer).
This was supported by GCC some years ago.
LLVM/clang has support for a tool called AddressSanitizer which
behaves like Valgrind but is better integrated with GDB.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 38 / 39

js@cs.lth.se

C vs C++

I was requested to answer the question of why we should program in C
when there is a language called C++.
C compilers are reliable. The complexity of C++ forces me to think
that even a C++ front-end will never be bug-free.
C is nicer than Fortran — the other high-performance language.
It’s possible to make C code inefficient, for instance by not calling
functions directly but always through a pointer to a struct which
contains pointers to functions. This confuses optimizing compilers.
Virtual functions in C++ behave like that so the main reason for using
C++ over C makes your program slower.
Some time ago, I tried to recompile a very large open source code
written in C++ by leading industry experts in compilers — they are
world class experts.
Of course it didn’t compile, and in my experience since 1988, C++
code that is a few years old usually does not compile.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2015 39 / 39

js@cs.lth.se

