
Contents of Lecture 6

Inline functions
Statements
The C Library

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 1 / 28

js@cs.lth.se

Three versions of a program

void f(int* a)
{

*a = 12;
}

int g(void)
{

int b;

f(&b);

return b + 1;
}

int c;

int main(void)
{

c = g();
}

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 2 / 28

js@cs.lth.se

Using a macro

#define F(var, value) ((var) = (value))

int g(void)
{

int b;

F(b, 12);

return b + 1;
}

int c;

int main(void)
{

c = g();
}

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 3 / 28

js@cs.lth.se

Using an inline function

inline void f(int* a)
{

*a = 12;
}

int g(void)
{

int b;

f(&b);
return b + 1;

}

int c;
int (*fp)(void) = g;

struct s {
int (*open)(const char* name, int mode);
int (*close)(const char* name, int mode);

};

struct t {
int data;
struct s* p;

};

struct t a, b, c;

int main(void)
{

c = (*fp)();
struct s* p;

p =
p->open = xopen;
p->close = xclose;

(*p->open)("file", 1);

p->open("file", 1);
}

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 4 / 28

js@cs.lth.se

Conclusion

After inspecting the assembler code we can draw some conclusions.
The program will be faster if small frequently called functions are
inlined somehow.
The gcc compiler can handle the inlining for us — so we don’t need
to use neither a macro nor the inline specifier.
When should we use macros or the inline specifier?
If we use a poor compiler, or if we don’t know which compiler a
customer will use, then it might make sense to use either macro or
inline.
If we share our C code as open source code, however, it’s a fairly good
assumption that gcc will be used to compile it so simply add
optimization to the CFLAGS variable in makefile.

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 5 / 28

js@cs.lth.se

Two courses about writing fast C code

In EDAF15 Algorithm implementation we study techniques to write
faster C code:

How modern processors work and how that can be exploited by C
programmers.
How to measure and analyze the performance and what happens in the
processor that affects the performance.

This is covered in Chapters 3, 4, 6, and 14-16 in the book.
In EDAN25 Multicore programming we study multicore hardware and
how to write fast multithreaded C programs (and to some extent Java
and Scala programs).
This is covered in Section 7.18 and Chapters 5, 17 and 18 in the book.

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 6 / 28

js@cs.lth.se

So this course is about understanding C

Therefore we will not discuss in any more detail why inlining might be
good.
Instead, we will now focus on when it is not permitted to use inlining
and why.

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 7 / 28

js@cs.lth.se

Linkage and inline functions

Recall: external linkage means an identifier is accessible from other
files.
A function with internal linkage, i.e. declared with static can always
be inlined but functions with external linkage have restrictions:

An inline function with external linkage may not define modifiable data
with static storage duration.
An inline function with external linkage may not reference any identifier
with internal linkage.

What do these mean and why do we need these restrictions?

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 8 / 28

js@cs.lth.se

First restriction

extern inline int f(void)
{

static const int a[] = { 1, 2, 3 }; // OK.
static int x; // Inva l id .
int y = 0; // OK.

return ++y * ++x;
}

Restriction: an inline function with external linkage is not allowed to
declare modifiable data with static storage duration.
Since copies of f inlined in different files will use different instances of
x this is forbidden.
The constant array and modifiable variable with automatic storage
duration are OK.

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 9 / 28

js@cs.lth.se

Second restriction

static int g(void)
{

return 1;
}

static int a;

extern inline int f(void)
{

a = 1; // Inva l id .
return g(); // Inva l id .

}

Restriction: an inline function with external linkage is not allowed to
access any identifier with internal linkage.
When f is inlined in some file, it will use the available function g or
variable a but then different files can have different functions g, and a.

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 10 / 28

js@cs.lth.se

A warning

The gcc compiler supported the inline function specifier before it
was added to the C standard.
Unfortunately, gcc uses slightly non-standard semantics for inline.
A simple rule which works both in ISO C and with gcc is to declare
inline functions in header files such as:

#ifndef max_h
#define max_h

static inline int max(int a, int b)
{

return a >= b ? a : b;
}

#endif

Read Section 9.5.1 for details about the incompatibility — I will not
ask about it in the exam, however.

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 11 / 28

js@cs.lth.se

Chapter 11: Statements

Labeled statements
Compound statement
Expression and null statements
Selection statements
Iteration statements
Jump statements

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 12 / 28

js@cs.lth.se

Labeled statements

Labels — i.e. targets of goto statements.
Integer constant case statements in a switch.
The default statement which a switch will jump to if no case
matches.

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 13 / 28

js@cs.lth.se

Compound statement

A compound statement, a block, can contain a sequence of
statements and declarations.
For instance:

int main(void)
{

int a;
a = 1;
int b;
b = 2;

}

Mixing declarations and statements comes from C++ where some
objects declared as local variables need this.
In C there is no need to do this, and the main reason is simply (to
quote a top engineer at Sony Mobile) that: ”it’s ugly” .

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 14 / 28

js@cs.lth.se

First declarations and then statements

The following is cleaner:

int main(void)
{

int a;
int b;

a = 1;
b = 2;

}

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 15 / 28

js@cs.lth.se

Expression and null statements

Most statements are expression statements, including assignments.
A null statement does nothing and consists only of a semicolon.
Null statements are used at end of blocks to avoid syntax errors:

int main(void)
{

/∗ . . . ∗/
if (p == NULL)

goto cleanup;

/∗ . . . ∗/

cleanup:
;

}

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 16 / 28

js@cs.lth.se

Selection statements: if and switch

The controlling expression in a switch must be an integer.
If there are initializations in the compound block of a switch they are
not executed:

switch (a) {
int b = 10;

case 1:
printf("a is one\n");
a = b; // inva l id . b not defined .

// f a l l s through to case 2.

case 2: printf("a is two\n");
break;

default:
printf("hello from default\n");

}
Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 17 / 28

js@cs.lth.se

Iteration statements

Three loops: for, while, and do-while.
A for-loop can have a declaration statement:

for (int i = 0; i < N; ++i)
f(i);

This was partly introduced to C due to C++ already had it and partly
due to a false assumption that optimizing compilers would be helped
by having the declaration close to the for-loop, which is nonsense.

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 18 / 28

js@cs.lth.se

New in C11: exact rules for optimizing away loops

Consider the following loop:

int i;
unsigned b = 0;

for (i = 1; i; b += 1)
;

abort();

Previously there were no rules regarding whether compilers are allowed
to optimize away loops which never terminate and do not affect
output by themselves.
C11 says compilers may optimize away loops if they do not access
atomic or volatile objects, perform I/O, or have a constant nonzero
termination condition, e.g. while (1) { } must stay.

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 19 / 28

js@cs.lth.se

Integer divide and remainder

The value of −5/3 is −1 but that was not always certain!
In ANSI C (i.e. before C99) the rounding mode was implementation
defined.
Since C99, ISO C follows FORTRAN which rounds towards zero (i.e.
truncation).
The % operator computes the remainder of a/b as r = a− a/b ∗ b
What is printed by the following program?

int a = 5;
int b = -3;
int q = a / b;
int r = a - q * b;
assert(a % b == r);
printf("q = %d, r = %d\n", q, r);

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 20 / 28

js@cs.lth.se

Integer divide and remainder

Output from the previous program is: q = -1, r = 2

What about the following program?

int a = -5;
int b = 3;
int q = a / b;
int r = a - q * b;
assert(a % b == r);
printf("q = %d, r = %d\n", q, r);

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 21 / 28

js@cs.lth.se

Signed versus unsigned integer arithmetic

Output from the previous program is: q = -1, r = -2

In general, the value of a % b has the sign of a — also if both are
negative.
For unsigned integers, r ≥ 0.

unsigned int a = 5;
unsigned int b = 3;
unsigned int q = a / b;
unsigned int r = a - q * b;
assert(a % b == r);
printf("q = %d, r = %d\n", q, r);

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 22 / 28

js@cs.lth.se

Arithmetic with both signed and unsigned integers

Suppose we have a + b and the operands have different types.
Then the usual arithmetic conversions apply.
Each arithmentic type has a rank and long double has highest rank
among real types (as opposed to imaginary or complex types) down to
char and _Bool.
Two types are corresponding if they only differ in signed versus
unsigned.
If one operand has e.g. type signed int and the other
unsigned int then the signed operand is converted to the
corresponding unsigned type, i.e. unsigned int.
Recall: all unsigned arithmetic is performed modulo 2N where N is the
number of bits in the type

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 23 / 28

js@cs.lth.se

Examples

−3+ 5 = 2 — both have type signed int

−3+ 5U = (232 − 3) + 5U = 2u — if UINT_MAX = 232 − 1.
−3/5U =?

−3%5U =?

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 24 / 28

js@cs.lth.se

Examples

−3/5U = 858993458
−3%5U = 3
3U/− 5 =?

3U%− 5 =?

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 25 / 28

js@cs.lth.se

Examples

3U/− 5 = 0
3U%− 5 = 3
What is printed by the program below?

if (-5 > 3U)
puts("PASS");

else
puts("FAIL");

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 26 / 28

js@cs.lth.se

More about usual arithmetic conversions

Recall: if the operands only differ in signed/unsigned then the signed
is converted to the corresponding unsigned type.
I should say: the rank of the type of the operand with signed type...
But ”simplify” it as: the rank of the signed type...
Now: if the rank of the signed type is higher than the rank of the
unsigned type and the signed type can represent all values of the
unsigned type, then the operand with unsigned type is converted to
the type of the signed type:

if (-5LL > 3U)
puts("FAIL");

else
puts("PASS");

Since the type signed long long can represent all values of type
unsigned int the conversion is to signed long long.

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 27 / 28

js@cs.lth.se

Another example with usual arithmetic conversions

Finally: if the rank of the signed type is higher than the rank of the
unsigned type but the signed type cannot represent all values of the
unsigned type, then the operand with signed type is converted to its
corresponding type:

// assume s izeo f (signed long) == s izeo f (unsigned int)
if (-5L > 3U)

puts("PASS");
else

puts("FAIL");

If the type signed long cannot represent all values of type
unsigned int the -5L is converted to unsigned long (and becomes
a big number...).
Warning: the C standard does not specify the output of the last two
examples since their behavior depends on the sizes of the integer types!
Summary: avoid comparing signed and unsigned types — especially
not corresponding types.

Jonas Skeppstedt (js@cs.lth.se) Lecture 6 2015 28 / 28

js@cs.lth.se

