
Contents of Lecture 5: Expressions

Precedence and associativity
Generic selections
Arrays vs pointers
Compound literals
Alignment
Divide and remainder
Relational and equality expressions

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 1 / 40

js@cs.lth.se

Precedence and associativity

All operators are ordered according to their precedence.
For instance * has higher precedence than +.
The associativity specifies in which order multiple operators with the
same precedence should be evaluated.
The binary operators are left-associative.
For instance a - b - c is evaluated as (a - b) - c.
The unary, the assignment operators, and the conditional expression
are right-associative.
For instance a = b = c means a = (b = c).
a += b += c means a += (b += c).
If initially a = 1, b = 10 and c = 100, then the above results in
b = 110 and a = 111.
Thus the value of b += c is the new value of b.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 2 / 40

js@cs.lth.se

More examples

What is the value of:

1 << 2 + 3

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 3 / 40

js@cs.lth.se

More examples

The value on the previous slide is:

1 << (2 + 3)
1 << 5
32

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 4 / 40

js@cs.lth.se

Evaluation of an expression

Recall that operands smaller than int are converted either to int or
unsigned int.
Also recall from that the usual arithmetic conversions determine the
type of the result of an operation.
For instance:

unsigned char a = 1;
unsigned short b = 2;
double c;

c = a / b;
a = c + 1;

First both a and b are converted to int.
The type of the quotient is int which is then converted to double.
The type of the sum is double.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 5 / 40

js@cs.lth.se

Assignment

At an assignment the value is converted to the type of the modified
variable.
In the previous example:

unsigned char a = 1;
unsigned short b = 2;
double c;

c = a / b;

What can we do to get 0.5 assigned to c?
What about:

c = (double)(a / b); // No ef fect !

One of the operands must be converted to double!

c = (double)a / b; // OK. c = 0.5

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 6 / 40

js@cs.lth.se

Exceptional conditions

Note the difference between the following:
the value of an operation cannot be represented in the type of the
expression
the value assigned to a variable cannot be represented in the type of
the variable

In the former case we have an overflow which can result in undefined
behavior and a crash.
In the latter case we have an the implementation must document
what happens — for integers usually as many bits that fit are stored.

unsigned char a;
signed char b;
float c;
a = 0xfff;
b = 0xfff;
c = 1e100;

What are the values of a, b, and c?
Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 7 / 40

js@cs.lth.se

Values

a = 255

b = -1

c = INFINITY

The macro INFINITY is defined in <math.h>

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 8 / 40

js@cs.lth.se

Another quiz

What is the value of the following:

unsigned char uc = 255;

uc + 1

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 9 / 40

js@cs.lth.se

Overflow

The value in the previous slide is 256 since uc is integer promoted to
the type int and then two operands of type int are added.
What about:

#include <limits.h>

int a = INT_MAX;

a + 1;

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 10 / 40

js@cs.lth.se

The result

In the previous slide, the type of the result is int but the sum cannot
be represented in that type.
For signed integers, an overflow triggers undefined behavior.
For unsigned integers, an overflow ”wraps around”, i.e. all unsigned
arithmetic is performed modulo one greater than the maximum value
of the type:

unsigned int a = UINT_MAX;

a + 1; // zero

For floating point on most machines the result becomes INFINITY.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 11 / 40

js@cs.lth.se

Struct parameter

Given:

typedef struct {
double x;
double y;

} point_t;

void print(point_t p);

Assume we have calculated x and y and want to print them as a
point:

point_t tmp;

tmp.x = x;
tmp.y = y;

print(tmp);

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 12 / 40

js@cs.lth.se

We cannot use a cast instead

For scalar parameters, we can either pass the scalar value, or if there is
no type for the parameter (e.g. as for printf).
We cannot make a cast for an aggregate type.
Aggregate types are structs/unions and arrays.
What should we do?
As above or using the C99 compound literal.
Compound literals were first used in Ken Thompson’s C compiler for
the Plan9 operating system — recall Ken Thompson invented UNIX
(and UTF-8 and many other things).

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 13 / 40

js@cs.lth.se

Compound literals

Compound literals look like casts (explicit conversions) but they are
different.
One purpose of compound literals is to make it possible to create
constants for structs:

(point_t) { 1.23, 4.56 };

We can pass it to the print function:

int main(void)
{

print((point_t) { 1.23, 4.56 });
}

So what is a compound literal really and how it is implemented in C
compilers?

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 14 / 40

js@cs.lth.se

Details of compound literals

A compound literal is simply an anonymous variable initialized using
special syntax.
Since it’s a normal object, we can take its address:

void print(point_t*);

int main(void)
{

print(&(point_t) { 1.23, 4.56 });
}

We can also use designated initializers:

print(&(point_t) { .x = 1.23, .y = 4.56 });

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 15 / 40

js@cs.lth.se

Compound literals for other types

We can use compound literals for other types as well:

int* p = (int[]){ 1, 2, 3 };
int a = (int){ 1 };

There is no purpose to use compound literals for scalar types, however.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 16 / 40

js@cs.lth.se

NaN and relational and equality expressions

Floating point comparisons with NaN are always false.
Recall: NaN stands for not-a-number and is the value of expressions
which are not mathematically defined such as:

0/0 ∞/∞ ∞−∞

Thus we should not change comparisons such as

if (a < b)
printf("case 1\n");

else
printf("case 2\n");

into:

if (b >= a)
printf("case 2\n");

else
printf("case 1\n");

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 17 / 40

js@cs.lth.se

Pointers and relational and equality expressions

The relational expressions are: < <= > >=

The equality expressions are: == !=

Pointers can be compared in relational expressions only if they point
to the same array object.
For relational expressions, scalar variables are treated as arrays with
one element.
The compiler must ensure that the first byte after the array is a valid
address.
Any valid pointers to compatible types can be compared in equality
expressions.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 18 / 40

js@cs.lth.se

Valid optimization of array references

double a[N]; double* p = a;
double* end = &a[N];

for (i = 0; i < N; ++i)
x += a[i]; while (p < end)

x += *p++;

Don’t do this by hand, instead use the command: cc -O2

Do this only if you are not allowed to use compiler optimizations.
In the course EDA230 Optimizing Compilers it is taught how this and
other optimizations are implemented.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 19 / 40

js@cs.lth.se

Invalid optimization of array references

double a[N]; double* p = &a[N];

for (i = N-1; i >= 0; --i) while (--p >= a)
x += a[i]; x += *p;

In the last iteration p == a[-1] in the comparison.
The compiler is not required to make that address valid.
The code to the right triggers undefined behavior.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 20 / 40

js@cs.lth.se

Modifications of variables

A sequence point, for example a semicolon, is used in C to determine
when side effects have been performed.
The most important side effect is the modification of a variable.
A variable may only be modified once between two sequence points.
The following are invalid:

a = a = 1;
b = ++b;
++c * c--;

In addition, a variable may not be read after a modification before the
next sequence point. Therefore also wrong:

b = (a = 1) + (a * 2);

The code is invalid if the left operand of the add is evaluated first —
which it may be since the evaluation order is unspecified.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 21 / 40

js@cs.lth.se

Comma expression

jitem A comma expression can be used when multiple variables should
be initialized in a for loop:

for (i = 0, p = list; p != NULL; p = p->next)
/∗ . . . ∗/

In a comma expression first the left operand is evaluated, and then the
right operand.
There is a sequence point between the evaluations of the operands.
The value of a comma expression is the value of the right operand.
To use a comma expression in an argument list, it must be enclosed in
parentheses:

printf("%d\n", (1, 2)); // pr ints 2

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 22 / 40

js@cs.lth.se

Alignment of pointers

Recall: if a type has an alignment b it means objects of that type
should have an address that is a multiple of b.
The operator _Alignof takes a type name and gives the alignment of
that type represented as size_t.
Including <stdalign.h> we can write alignof instead:

printf("%zu\n", alignof(double));

Suppose now we allocate 20 bytes and wish to store an object of type
double there:

char data[20];
double* p;

p = (double*)data;
*p = x; // No −−− probably not al igned !

What can we do?
Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 23 / 40

js@cs.lth.se

Aligning a pointer

We need to add a number to p so that its value becomes a multiple
of 8.
One attempt is:

unsigned a = (unsigned)p; // wrong type .
unsigned r = a % 8;

if (r != 0)
a += 8 - r;

p = (double*)a; // might not work .

If p = 15 then r = 7 and we add 1 to a.
An alternative is to calculate: (p + 7)/8 ∗ 8 — then we don’t need to
branch.
(15+ 7)/8 ∗ 8 = 22/8 ∗ 8 = 2 ∗ 8 = 16.
Remainder and division are expensive however.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 24 / 40

js@cs.lth.se

Using bitwise operators

We can write p + 7 as x ∗ 8+ y , where 0 ≤ y ≤ 7.
The purpose of dividing and multiplying is to get rid of y .
How can we do that faster than using division and multiplication?
Bitwise operators are useful for this.
Dividing and multiplying by 8 is equivalent to clearing the bits which
contribute to y .
p + 7 = 15+ 7 = 22 = 16+ 4+ 2 = 101102

The value of the bitwise complement operator is the operand with
every bit inverted.
That is, we should do a bitwise and with the bitwise complement of
1112, in C: ~7:

unsigned a = (unsigned)p; // s t i l l wrong type .

a = (a + 7) & ~7;
p = (double*)a;

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 25 / 40

js@cs.lth.se

The uintptr_t

Since a pointer may be 64 bits and an unsigned int only 16 bits the
above code is wrong.
We should use the type uintptr_t defined in the header file
<stdint.h>.
Sometimes, such as when allocating memory buffers for the Cell
processor we need to align pointers like we did above.
If we use a compiler with support for VLA’s such as gcc we can
allocate memory for a matrix as in Example 1.4.13 — as we saw in
Lecture 4.
If we use a compiler without VLA support we can do as in
Example 1.4.12.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 26 / 40

js@cs.lth.se

Example 1.4.12

The goals with Example 1.4.12 are:
to allocate memory with only one call to malloc
to be able to use matrix syntax: a[i][j]
to be portable to an ANSI C compiler or C11 compiler without VLA
support

The function alloc allocates memory for a matrix with an element
size specified by block which must be a power of 2.
We will not go into the details — it is essentially exactly what we just
saw with a value of block being 8.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 27 / 40

js@cs.lth.se

The C preprocessor

Predefined macros

Macro replacement

Conditional inclusion

Source file inclusion

Line control

Error directive

Pragma directive

Null directive

Predefined macro names

Pragma operator

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 28 / 40

js@cs.lth.se

Predefined macros: useful standard macros

__FILE__ expands to the source file name.
__LINE__ expands to the current line number.
__DATE__ expands to the date of translation.
__TIME__ expands to the time of translation.
__STDC__ expands to 1 if the implementation is conforming.
__STDC_HOSTED__ expands to 1 if the implementation is
hosted, and to 0 if it is free-standing.
__STDC_VERSION__ expands to 199901L.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 29 / 40

js@cs.lth.se

Predefined macros: implementation-defined

__STDC_IEC_559__ expands to 1 if IEC 60559/IEEE 754 is
supported (except complex arithmetic).
__STDC_IEC_559_COMPLEX__ expands to 1 if complex
arithmetic in IEC 60559/IEEE 754 is supported.
__STDC_ISO_10646__ expands to an integer yyyymmL to
indicate which values of wchar_t are supported.
If a predefined macro is undefined then behavior is undefined.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 30 / 40

js@cs.lth.se

Defining macros

#define obj (a) a+1
#define bad(a) a+1 // Wrong.
#define good(a) (a+1) // Use parentheses .

obj(3) => (a) a+1(3)
bad(3)*10 => 3+1*10
good(3)*10 => (3+1)*10
(good)(3)*10 => (good)(3)*10

No whitespace between macro name and left parenthesis in
function-like macro.
A function-like macro not followed by left parenthesis is not expanded.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 31 / 40

js@cs.lth.se

Conditional inclusion

#define DEBUG

#ifdef DEBUG
printf("here we go: %s %d\n", __FILE__, __LINE__);

#endif

#ifndef DEBUG
#endif

#if expr1
#elif expr2
#elif expr3
#else
#endif

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 32 / 40

js@cs.lth.se

More directives

#define DEBUG 12
#define DEBUG 13 // inva l id : cannot redef ine a macro
#undef DEBUG
#define DEBUG 13 // OK. undefined f i r s t

#line 9999 "a.c" // w i l l set __LINE__ and __FILE__

#ifndef __STDC__
#error this will not with a pre-ANSI compiler!
#endif

#pragma directive from user to compiler
_Pragma("directive from user to compiler")

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 33 / 40

js@cs.lth.se

operator ”stringizer”

Operator # must precede a macro parameter and it expands to a
string.

#define xstr(a) #a
#define str(b) xstr(b)
#define c 12

xstr(c) => "c"
str(c) => "12"

#define fatal(expr) { \
fprintf(stderr, "%s line %d in \"%s\": " \
"fatal error %s = %d\n", __FILE__, \
__LINE__, __func__, #expr, expr); exit(1); }

int x = 2;
fatal(x); => a.c line 15 in "main": fatal error x = 2

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 34 / 40

js@cs.lth.se

operator

Operator ## concatenates the tokens to the left and right.

#define name(id, type) id##type

name(x,int) => xint

#define a x ## y
#define xy 12
#int b = a; // i n i t i a l i z e s b to 12;

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 35 / 40

js@cs.lth.se

__VA_ARGS__

Sometimes it is convenient to a have a variable number of arguments
to a function-like macro, eg when using printf.
Without __VA_ARGS__, the number of arguments must match
the number of parameters.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 36 / 40

js@cs.lth.se

Variable number of arguments in macros

#ifdef DEBUG
#define pr(...) fprintf(stderr, __VA_ARGS__);
#else
#define pr(...) /∗ do nothing . ∗/
#endif

int x = 1, y = 3;

pr("x = %d, y = %d\n", x, y); => x = 1, y = 3

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 37 / 40

js@cs.lth.se

Macros can improve performance

Since macros are expanded in the called function they eliminate the
overhead of calling functions.
Macros can cause problems however:

#define square(a) a*a

x = 100 / square(10) => 100 / 10 * 10

Use parentheses:

#define square(a) ((a)*(a))

y = square(cos(x)) // va l id but slow
z = square(++y) // wrong

Now the cos function is called twice!
Modifying y twice is wrong.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 38 / 40

js@cs.lth.se

Macros with statements

Suppose we write want to swap the values of two variables using a
macro:

#define SWAP(a, b) tmp = a; a = b; b = tmp;

if (a < b)
SWAP(a, b);

What happens?
How about:

#define SWAP(a, b) { int tmp = a; a = b; b = tmp; }

if (a < b)
SWAP(a, b);

else
printf("syntax error!\n");

A compound statement cannot be followed by a semicolon.
Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 39 / 40

js@cs.lth.se

Using do-while loops

We can do as follows:

#define SWAP(a, b) do { int tmp = a; a = b; b = tmp; } while (0)

This macro will solve both of the previous problems.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 40 / 40

js@cs.lth.se

