
Contents of Lecture 4: Declarations

Implicint int
Storage class specifiers
Type specifiers
Enumeration specifiers
Type qualifiers

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 1 / 39

js@cs.lth.se

Now obsolete: implicit int

Sometimes you can see code such as:

main() // inva l id
{

}

or even:

#include <stdio.h>

count; // inva l id

float x;

In earlier versions of C one could skip the type, which then became
int, and is called implicit int.
Calling a function before its declaration also set its return type to int.
It’s invalid C so don’t use it — but compilers often allow it...

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 2 / 39

js@cs.lth.se

Storage class specifiers

Last lecture we discussed the different kinds of storage durations.
Now we will see how to specify some of them explicitly.
Dynamic (important) and temporary (less important) storage duration
are not specified by the programmer using any particular syntax but
defined by the standard.
The storage class specifiers are:

typedef extern static
_Thread_local auto register

Of these typedef does not refer to any kind of storage duration —
instead it introduces another name of a type and not a new type:

typedef int num_t;
int* p;
num_t* q;
p = q; // va l id s ince p and q have the same type .

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 3 / 39

js@cs.lth.se

Storage class specifiers: static at file scope

static int count; /∗ i n i t i a l i z e d to zero . ∗/

static void init(void)
{

/∗ Do some i n i t i a l i z a t i o n s . . . ∗/
}

Used to make an identifier invisible outside the source file
With static at file scope, there is no risk of name conflicts with other
files.
Always use static for file-local identifiers.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 4 / 39

js@cs.lth.se

Storage class specifiers: static at block scope 1(2)

int fun(int a, int b)
{

static int beenhere; /∗ i n i t i a l i z e d to zero . ∗/
if (!beenhere) {

init();
beenhere = 1;

}
/∗ do the normal work . . . ∗/

}

Used to make an identifier invisible outside the block (function in this
case)
Static storage duration: variable is not located on the stack but among
global variables; preserves its value across function calls

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 5 / 39

js@cs.lth.se

Storage class specifiers: static at block scope 2(2)

int fun(int a, int b)
{

static int c = 12; // OK.
static int* d = &c; // OK.
static int* e = &a; // Inva l id : non−constant .

}

A static variable can be initialized with a constant expression
An address may or may not be constant: &c is a constant expression
but &a is not — why?
Answer: the address of a stack allocated variable is the sum of the
stack pointer and a constant — and the stack pointer is certainly not
a constant.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 6 / 39

js@cs.lth.se

Storage class specifiers: extern

static int a; // inte rna l l inkage .
extern int a; // OK−− s t i l l i n te rna l l inkage .
extern int b; // external l inkage .
static int b; // No: s ta t i c fo l lows extern .
int f(void); // Imp l i c i t l y external l inkage .
int main(void) { f(); } // OK.
static int f(void) { } // No: undefined behavior !

The extern does not change a previously declared visible storage
class.
static followed by extern is OK but extern followed by static is
not.
These rules have to do with how one-pass compilers can be
implemented, assembler code may already have been generated which
cannot be changed.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 7 / 39

js@cs.lth.se

Storage class specifiers: auto and register

int fun(void)
{

register int c;
int* d = &c; // inva l id .
register int e[4] // OK.
register struct { int a; int b; } f; // OK.

}

auto is completely useless
register indicates to the compiler that the variable should be kept in
a register if possible. usually ignored, except for semantic analysis of
the following:
The address of a variable with register storage class cannot be taken.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 8 / 39

js@cs.lth.se

Storage class specifiers: typedef

typedef struct list_t list_t;
struct list_t {

list_t* next;
void* data;

};

typedef creates a synonym for a type.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 9 / 39

js@cs.lth.se

Type specifiers: basic types 1(2)

The type specifiers are: void, char, short, int, long, float,
double, signed, unsigned, _Bool, _Complex, _Imaginary,
struct-or-union, enum-specifier, and typedef-name.
The type specifiers are combined into lists including signed char,
unsigned char, char, signed long long and long double.
Note that signed char, unsigned char, and char all are different
types: char behaves like one of the other two (which is
implementation-defined) but it is a distinct type.

char* s;
unsigned char* t = s; // inva l id .

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 10 / 39

js@cs.lth.se

Type specifiers: basic types 2(2)

_Bool a;
#include <stdbool.h>
bool b;

The type _Bool is new in C99.
<stdbool.h> defines bool as a macro which expands to _Bool.
A bool can only take the values zero and one.
An assignment to a bool variable stores a one if the expression is not
zero.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 11 / 39

js@cs.lth.se

Type specifiers: enum

#include <limits.h>

enum color_t { RED, BLUE, GREEN };
enum large_t { a, b, c, d = INT_MAX - 1, e };
enum too_large_t { f = INT_MAX, g }; // inva l id
enum color_t color;

Unless the value is set explicitly, it becomes one more than the
previous, and zero for the first.
An enum declares named int constants.
The constants must be representable as int but the compiler may
decide to use a smaller type.
Many compilers allow larger constants.
Enums are sometimes better than #defines because debuggers
understand them.
The variable color can be used where an int can be used, eg as an
array index.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 12 / 39

js@cs.lth.se

Type specifiers: structs and unions

struct s {
int a; // OK.
int b:1; // OK, but avoid .
signed int c:1; // OK.
unsigned int d:1; // OK.
_Bool e:1; // OK.
color_t f:2; // Impl . def .
int g(int, int); // No.
int (*h)(int, int); // OK.
int i[0]; // No.
int j[]; // See below .

};

Avoid using plain int as bit-field type. Specify whether it is signed or
not.
The j[] is called a flexible array member and will be explain soon.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 13 / 39

js@cs.lth.se

Type qualifiers

const int a = 12; // OK.
const int* b = &a; // OK.
*b = 13; // inva l id .
a = 14; // inva l id .

const the variable cannot be changed after initialization.
volatile the variable can be changed in ”mysterious” ways: do not
put it in a register.
restrict a pointer with restrict qualifier points to data which no
other visible pointer can refer to if any of them modifies the data, and
helps compilers to optimize code but can cause extremely obscure
bugs if the programmer is not careful.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 14 / 39

js@cs.lth.se

Declarators: Type constructors

There are three type constructors:
Array
Function
Pointer

Array and Function have higher precedence than Pointer
Place array dimension or the function’s parenthesis to the right of the
declarator and a star before the declarator
Confusion arises because the type cannot be read from left to right
but must be read from ”inside” to the ”outside”: int
(*a[12])(int);. What is the type of a?

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 15 / 39

js@cs.lth.se

Declarators: Examples

int a; // int
int *b; // pointer to int
int **c; // pointer to pointer to int
int d[4]; // array of int
int e[4][5]; // array of array of int
int *f[4]; // array of pointers
int (*g[4])[5]; // array of pointers to array of int
int *h(); // function returning pointer to int
int (*i)(); // pointer to function returning int
int *j()(); // NO: func returning func
int (*k())(); // func returning pointer to func

A function cannot return a function or an array, only pointers to them.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 16 / 39

js@cs.lth.se

Initialization

typedef struct { int a, b, c, d; } type_t;

int main(void)
{

int a[10] = { 1, 2 };
int b[] = { 1, 2, 3 };
int c[] = { [4] = 12 };
type_t d = { .a = 3, .c = 5,6 };
int e; // undefined value .
static int f; // zero .

return 0;
}

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 17 / 39

js@cs.lth.se

A struct with an array

Consider the struct below:

#define N (10)
struct s {

int a[N];
};

Now suppose you want to decide on N during execution!
How can you do that?

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 18 / 39

js@cs.lth.se

A struct with a pointer

#include <stdlib.h>

struct s {
size_t n;
int* a;

};

/∗ . . . ∗/

struct s* s;

s = malloc(sizeof(struct s));
s->n = n;
s->a = malloc(n * sizeof(int));

This wastes memory for the pointer and time for two malloc calls.
How can we fool the compiler?

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 19 / 39

js@cs.lth.se

The struct hack (invalid code)

This is an official term in the ISO standard.

#include <stdlib.h>

struct s {
size_t n;
int a[1];

};

/∗ . . . ∗/

struct s* s;

s = malloc(sizeof(struct s) + (n-1) * sizeof(int));
s->n = n;

Unfortunately, s->a[1] is invalid C — and the C compiler or a
runtime testing tool can strike back!

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 20 / 39

js@cs.lth.se

Flexible array member

New in C99.

#include <stdlib.h>

struct s {
size_t n;
int a[];

};

/∗ . . . ∗/

struct s* s;

s = malloc(sizeof(struct s) + n * sizeof(int));
s->n = n;

Now s->a[0] up to and including s->a[s->n-1] is valid C.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 21 / 39

js@cs.lth.se

Restrictions

A flexible array member may only be used in a struct.
It must be the last struct member.
It must not be the only struct member.
We cannot declare an array of a struct with a flexible array member.
We can only declare a pointer to such a struct and not a variable
directly since the compiler is not required to be able to figure out how
much memory should be allocated.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 22 / 39

js@cs.lth.se

Variable length array: VLA

A local array (with automatic storage duration, i.e. allocated on the
stack) can have a non-constant size:

void f(size_t n)
{

int a[n];

/∗ . . . ∗/
}

We the execution comes to the declaration it evaluates and remembers
the size of n and the compiler must allocate memory for the array.
This memory is allocated on the stack simply by changing the stack
pointer.
Thus the programmer does not have to (and cannot) deallocate that
memory.
The memory is automatically deallocated when the function returns.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 23 / 39

js@cs.lth.se

Local array only

Since the memory for a VLA is allocated from the stack, only local
arrays can have a non-constant size.
VLA’s are different from flexible array members.
A VLA must be an ordinary identifier and not for instance a struct
member.
VLA’s are new in C99 and very useful.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 24 / 39

js@cs.lth.se

Restrictions of VLA’s

Unfortunately:
VLA’s has become optional in C11, but since gcc supports them most
compilers will also.
It’s impossible to know whether the allocation succeeded or not.

Use with care and never for a size supplied as program input —
otherwise a certain security risk.
Commercial compilers use it (or a similar approach called alloca) to
improve speed.
For instance allocating an array of object pointers can make iteration
through a data structure simpler and faster — forget it in a nuclear
power plant though.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 25 / 39

js@cs.lth.se

VLA’s and normal arrays

A VLA is organized in memory the same way as other arrays are.
The only difference really is that the compiler must produce code to
remember the array sizes.

void f(int a[3][4]);

void g(size_t m, size_t n)
{

int b[m][n];

f(b); // OK i f m == 3 and n == 4.
}

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 26 / 39

js@cs.lth.se

VLA parameters

A VLA can be a parameter:

void f(size_t m, size_t n, int a[m][n])
{

/∗ . . . ∗/
}

int b[3][4];

void g(void)
{

f(3, 4, b); // OK.
}

This is not dangerous in any way since the matrix was not allocated
on the stack.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 27 / 39

js@cs.lth.se

A function prototype with VLA

Consider f again:

void f(size_t m, size_t n, int a[m][n])
{

/∗ . . . ∗/
}

How can we declare f in a header file?
We can use:

void f(size_t m, size_t n, int a[m][n]);

But if we don’t want to write m and n?
Recall: we can write prototypes without parameter names:

void* malloc(size_t);

The we do as follows:

void f(size_t, size_t, int [*][*]);

Can we remove one or both of the stars?
Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 28 / 39

js@cs.lth.se

Recall array parameters become pointer parameters

An array parameter becomes a pointer parameter and we can therefore
skip the size:

void f(size_t, size_t, int [][*]);

Or:

void f(size_t, size_t, int (*)[*]);

But that does not win a prize for beautiful C code.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 29 / 39

js@cs.lth.se

Variably modified types

A type with a VLA is called a variably modified type.
We can declare a pointer to a VLA:

void f(size_t n)
{

int (*p)[n];

/∗ . . . ∗/
}

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 30 / 39

js@cs.lth.se

Example 1.4.13

With variably modified types, we can do:

#include <stdlib.h>

void f(size_t m, size_t n)
{

double (*a)[n];

a = calloc(m * n, sizeof(double));

/∗ . . . ∗/

a[i][j] =
}

Only one memory allocation and we can use matrix notation.
This works because the compiler must understand that the number of
columns is given by n.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 31 / 39

js@cs.lth.se

GDB — The GNU Debugger 1(4)

Compile with -g switch to cc.
GDB can take control over a running process: $ gdb program pid

Syntax Example Description

r arguments... r 20 Starts the program with an argument list.
b func b main Sets a breakpoint in a function.
b line b 12 Sets a breakpoint at a line in the current file.
d number d 1 Deletes a breakpoint.
c Continues execution.
p var p i Prints the value of a variable.
display var display i Prints value every time the program stops.
undisplay number undisplay 2 Cancels a display.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 32 / 39

js@cs.lth.se

GDB — The GNU Debugger 2(4)

Syntax Example Description

n Steps to the next line (skips called functions).
s Steps to the next line (steps into called functions).
p /x var /x i Prints on hexadecimal format.
p /u var /u i Prints on unsigned format.
p /d var /d i Prints on signed format.
p /c var /c i Prints data as characters.
p /f var /f i Prints data as floating-point numbers.
x format address x /c &result Prints memory area. Hit return for next address.

Same formats as when printing (see above).
display /i $pc Disassembles the next instruction to be executed.
display $r4 Displays register r4.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 33 / 39

js@cs.lth.se

GDB — The GNU Debugger 3(4)

Syntax Example Description

where Prints trace of all function calls.
kill Terminates the debugger process.
watch var watch a[i] Sets a watchpoint (see below).
whatis var whatis a Print type of a variable or function.
up Goes up to caller.
down Goes down to callee.
source file source cmd Reads and executes commands.
make Runs the UNIX make command.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 34 / 39

js@cs.lth.se

GDB — The GNU Debugger 4(4)

The print command can call a function in the application and print the
return value: p strlen(”gdb is cool”)

Watchpoint: watches for modifications of a variable. This can be very
slow since usually entire virtual pages must be set read-only. Can be
the best solution to kill ugly bugs when ”random” pointers are writing
in memory where they should not. The syntax is: watch variable.
GDB has both command line and graphical interfaces (the ddd and
xgdb programs).

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 35 / 39

js@cs.lth.se

Make 1(4)

CC = cc
CFLAGS = -O5
CFLAGS = -pedantic -Wall -g -Werror
OBJS = arena.o list.o main.o

all: $(OBJS)
$(CC) $(LDFLAGS) -o prog $(OBJS)

test: all
prog > output
diff output correct

dep:
$(CC) -M *.c > depend

include depend

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 36 / 39

js@cs.lth.se

Make 2(4)

Variables are set eg as CFLAGS = -O5. Only the last assignment
counts.
OBJS = arena.o list.o main.o tells make which object files
should be created. To create eg arena.o, make looks for a file arena.c
in the current directory and compiles it.
all: $(OBJS). Rules are written as target: x y z... and means
that to produce target (the name before the colon) the names after
the colon must first be produced. In our case, to produce all, each
object file must be produced which makes does by compiling them, if
necessary (see below).

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 37 / 39

js@cs.lth.se

Make 3(4)

When all items on the right of the colon are ready (up-to-date) the
commands on the lines below the rule are executed. Whenever any of
these commands returns a nonzero value, make will stop and report an
error (unless the command was preceded by a minus).
A C file is recompiled if it has changed, or if any header file included
from the C file has changed. The rule dep uses the C compiler switch
-M to create a file with such dependencies.
The rule test: all first recompiles the program if necessary, then
runs it and puts the output in a file called output which is then
compared (using diff) with the expected output in the file correct.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 38 / 39

js@cs.lth.se

Make 4(4)

By default, make will perform the first rule. To do the test, say make
test, or move that rule first and run make with no arguments.
Note that the commands below a rule must be preceded by a tab
character.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2014 39 / 39

js@cs.lth.se

