
Contents of Lecture 3

Repetition of matrices

double a[3][4];
double* b;
double** c;

Terminology
Linkage
Types
Conversions

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 1 / 33

js@cs.lth.se

A global matrix: double a[3][4]

Suppose we declare double a[3][4] as a global matrix.
The compiler decides in which address the matrix will start.
Since the matrix is global the address is a known number.

address element
a+0 a[0][0]
a+8 a[0][1]
a+16 a[0][2]
a+24 a[0][3]
a+32 a[1][0]
a+40 a[1][1]
a+48 a[1][2]
a+56 a[1][3]
a+64 a[2][0]
a+72 a[2][1]
a+80 a[2][2]
a+88 a[2][3]

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 2 / 33

js@cs.lth.se

Accessing the global matrix

We will now see what happens when we access the matrix.

double a[3][4];
double* p;
double x;

To do x = a[i][j] the compiler will produce code for:

// Find address of a [i] [j] :
p = a + (i * 4 + j) * sizeof(double);

// Read from memory:
x = *p;

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 3 / 33

js@cs.lth.se

Creating a matrix with one call to calloc

double* b; // 3 x 4 matrix
double* p;
double x;

b = calloc(3 * 4, sizeof(double));
x = b[i * 4 + j];

Code for reading element (i , j):

// Find address of b [i ∗ 4 + j] :
p = b + (i * 4 + j) * sizeof(double);

// Read from memory:
x = *p;

The differences are:
The value of b comes from calloc.
We must do i × 4 ourselves.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 4 / 33

js@cs.lth.se

Creating a matrix with m + 1 calls to calloc

double** c;

c = calloc(3, sizeof(double));
for (i = 0; i < 3; ++i)

c[i] = calloc(4, sizeof(double));
x = c[i][j];

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 5 / 33

js@cs.lth.se

Accessing the matrix

To do x = c[i][j] the compiler will produce code for:

double** p;
double* q;
double* r;
double x;

// Find address of c [i] ;
p = c + i * sizeof(double*); // s i zeo f a pointer

// Read address of row i :
q = *p;

// Find address of q [j] , i . e . c [i] [j] :
r = q + j * sizeof(double); // s i zeo f a double

// Read from memory:
x = *r;

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 6 / 33

js@cs.lth.se

Comments on free

int* a;
int* b;
a = malloc(sizeof(int));
b = a;
free(a);
*a = 12; // wrong .
a; // wrong .
b; // wrong .

After you have freed an object, any mention of that object is wrong,
and the behavior is undefined. Anything is permitted to happen
according to the C standard.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 7 / 33

js@cs.lth.se

Iterating through a circular list

#include <stddef.h>

size_t length(list_t* head)
{

size_t count;
list_t* p;

if (head == NULL)
return 0;

p = head;
do {

count += 1;
p = p->succ;

} while (p != head);
return count;

}

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 8 / 33

js@cs.lth.se

A comment on whether to use list_t or not

We set the data pointer to an object which we want to put in a list.
Now, why don’t we just add the succ and pred variables to the object
type directly?
That would avoid the waste of allocating memory for the void* data.
The answer is that if there is one obvious list that our objects should
be put in, then that is a good idea, since it avoids calling malloc/free
when dealing with lists.
The list_t should be used when eg an object should be put in two
lists at the same time.
Another aspect is that it may be more convenient to waste that small
amount of memory and just use the list_t type. Make your own
priorities.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 9 / 33

js@cs.lth.se

Strings in C

Strings are adjacent characters terminated with a 0.
”C is fun” is a string and consists of 9 bytes.
Eg char v[10] can hold a string.
Eg char* s can point to a string — but it is no string.
If we also do s = malloc(10); it is still no string.
However, s points to memory which can hold a string.
If we now do s = ”C is fun”; — what will happen?
The memory allocated by malloc is lost.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 10 / 33

js@cs.lth.se

Copying a string

To make a copy of a string, we can use the following function.

char* copy_string(char* s)
{

int length;
char* t;

length = strlen(s);
t = malloc(length + 1); // why + 1 ???
strcpy(t, s);
return t;

}

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 11 / 33

js@cs.lth.se

size_t strlen(const char* s);

The type size_t is an unsigned integer of some suitable size, and
const means this function promises not to modify what s points to.

size_t strlen(const char* s)
{

size_t length = 0;
while (*s != 0) { // have we reached the zero?

length += 1; // one more char found .
s += 1; // step to the next character .

}
return length;

}

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 12 / 33

js@cs.lth.se

A faster size_t strlen(const char* s);

size_t strlen(const char* s)
{

char* s0 = s;
while (*s != 0)

s += 1;
return s - s0; // length i s d i f fe rence in addresses

}

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 13 / 33

js@cs.lth.se

Implementation

An implementation refers to a C compiler and a C Standard Library.
Implementation defined behavior is behavior not specified by the
ISO C Standard, but rather by the implementation.

Examples include the range of the different types.
Whether signed shift is logical or arithmetic:

int a;
int b;

b = a >> 2; // arithmetic in Java
b = a >>> 2; // log i ca l in Java −−− i nva l i d C!

The shifts above remove the two least significant bits.
Logical shift copies in zeroes at the most significant position.
Arithmetic shift copies in the value of the most significant bit.
For a positive a we have a >> 3 == a / 8, due to 23 = 8.
For a negative a — see pages 114 — 116.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 14 / 33

js@cs.lth.se

Unspecified and undefined behavior

The implementation must document how it deals with implementation
defined behavior.
For unspecified behavior the implementation is free to do as it
wishes among a set of reasonable alternatives.
For instance:

the order of evaluation of parameters to a function
the order of evaluation of operands of binary arithmetic operators (but
not && and ||).

For undefined behavior anything may happen.
For instance:

Reading or writing through a null pointer.
Overflow of signed integers.
Divide by zero.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 15 / 33

js@cs.lth.se

Character sets

C99 uses implementation defined multibyte characters sequences and
wide characters.
C11 uses UTF-8 multibyte character sequences and wide characters
with support for Unicode.
A wide character is 16 or 32 bits wide and makes all characters this
size which usually is a waste of space but makes processing easier.
UTF-8 was invented by the person who invented UNIX and is an
extension to ASCII — Ken Thompson at Bell Labs.
A non-ASCII Unicode character such as Ö can be encoded by a few
bytes in UTF-8.
When using multibyte characters instead of wide characters only the
non-ASCII characters need multiple bytes.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 16 / 33

js@cs.lth.se

Scopes of identifiers

File scope
Function scope — only labels have function scope so label names
must be unique in a function.

void f(void)
{
L: goto L;
}

Function prototype scope — don’t declare new types in a prototype
since the type will be useless elsewhere:

void f(struct s { int a; } s);

Block scope

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 17 / 33

js@cs.lth.se

Linkage of identifiers

An identifier can have external, internal or no linkage.
Linkage should not be confused with storage duration but is somewhat
related.
With linkage is meant that an identifier can be mentioned multiple
times while refering to the same function or variable.
A variable or function at file scope declared with static has internal
linkage.
Internal linkage is very useful to avoid conflicts between different files.
You may want a function initialize in several C files. Declare them
with static:

static void initialize(void)
{

/∗ . . . ∗/
}

Without static there can only be one identifier initialize.
Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 18 / 33

js@cs.lth.se

Identifiers with linkage can be declared multiple times

Declaring the same identifier multiple times in the same file results
only in one variable:

int a; // external l inkage .
int a; // external l inkage .
extern int b; // external l inkage .
extern int b; // external l inkage .
static int c; // inte rna l l inkage .
static int c; // inte rna l l inkage .

An identifier with external linkage must be unique in the entire
program.
An identifier with internal linkage must be unique in the file.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 19 / 33

js@cs.lth.se

Identifiers with no linkage

At block scope only identifiers declared with extern have linkage.
We get a compilation error if we redeclare an identifier at the same
scope and without linkage:

int a;

int main(void)
{

int b;
int b; // inva l id .
static int c; // no l inkage .
static int c; // no l inkage and inva l id .
extern int a; // external l inkage .

return 0;
}

The a in main refers to the global variable.
Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 20 / 33

js@cs.lth.se

Storage duration of objects

By storage duration is meant the lifetime of an object.
An ”object” is some data such as a variable or an object allocated with
malloc.

Local variables on the stack have automatic storage duration and
disappear when the function returns.
All variables with linkage have static storage duration and exist from
the beginning to the end of the program’s execution.
In C11 there is also thread storage duration for variables declared
with _Thread_local (and possibly static or extern) and exist from
the beginning to the end of the thread’s execution.
Data allocated from the heap has dynamic storage duration and
exists until it is freed.
C11 also introduced temporary lifetime which says that a returned
value must exist for the duration of the full expression in which it was
created — for details see the book.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 21 / 33

js@cs.lth.se

Types

There are three main kinds of types:
Function types
Object types
Incomplete object types

typedef struct list_t list_t;
extern int a[];

void is an incomplete object type which can never be completed.
Except for void, incomplete object types can later be completed.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 22 / 33

js@cs.lth.se

Object types

The object types are divided into:
Scalar types — pointers and arithmetic types (i.e. numbers)
Aggregate types — arrays and structs

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 23 / 33

js@cs.lth.se

Compatible types

The basic rules is that two types are compatible if they are the same
type.
We can only assign pointers to compatible types and the null pointer.
In C++ we can write 0 for the null pointer but in C we must use NULL
(since there are machine which use a different value for the null
pointer).

char* cp;
signed char* sp;
unsigned char* up;
unsigned int* p;

p = NULL; // va l id
p = up; // inva l id
cp = sp; // inva l id
cp = up; // inva l id

What about structs?
Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 24 / 33

js@cs.lth.se

Compatibility of different structs

Recall a translation unit is a C file being compiled with all its included
files.
C uses name equivalence for structs declared in the same translation
unit.
The two structs below are not compatible types.

struct s { int a, b; } *p, *q;
struct t { int a, b; } *r;

p = q; // va l id : pointers to the same type .
r = p; // inva l id : pointers to d i f f e r ent types .

C uses structural equivalence for structs declared in different
translation units, for which two different declarations of the same
struct are compatible despite being in different translation units.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 25 / 33

js@cs.lth.se

Casts

A cast is an explicit type conversion, which sometimes are needed. For
instance, if we want to copy the value of a pointer to an integer, we
use the type intptr_t and convert the pointer using a cast:

#include <stdint.h>

intptr_t a;
int b;
void* p;

a = (intptr_t)p; // converts a pointer to an integer type .
b = (int)p; // wrong type : may not work .

This is one of the rare cases we should use a cast.
We will see later why we might want to do this.
When we use casts with pointers we are playing with dangerous tools.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 26 / 33

js@cs.lth.se

Type aliasing and the ANSI C Aliasing Rules

struct s { int a, b; } *p, *q;
struct t { int a, b; } *r;
int x;

r->a = 1;
p = (struct s*)r;
p->a = 2;
x = r->a; // x may become 1.

To help compilers optimize C code, they are allowed to assume that
pointers to incompatible types cannot point to the same data.
Exceptions to this rule are if one of the types is a pointer to void,
pointer to a char type, or the same integer type but with different
sign.
The last is called corresponding integer types.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 27 / 33

js@cs.lth.se

Corresponding integer types

Integer types which only differ in sign are called corresponding integer
types:

signed int* p;
unsigned int* q;
int x;

*q = 1;
p = (signed int*)q;
*p = 2;
x = *q; // x must become 2.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 28 / 33

js@cs.lth.se

Integer promotions

For integer types smaller than an int, operands of arithmetic
operators and function call arguments are converted to an int or
unsigned int (if an int cannot hold all values of the original type).
Consider:

unsigned char a = 1;
unsigned char b = 2;
unsigned char c;

c = a + b;

Each of a and b is converted to an int before adding and then the
result is converted to an unsigned char in the assignment.
This means that:

sizeof a < sizeof +a
sizeof(unsigned char) < sizeof(int)

We will see some effects of this next...
Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 29 / 33

js@cs.lth.se

Hex numbers and the bitwise complement operator

A number on base 16 is called a hex number and is written with 0x as
a prefix:

unsigned char a = 0xf0;

This stores 11110000 in a (assuming it is 8 bits wide).
The ~ operator changes each 1 to 0 and 0 to 1 (called bitwise
complement) — of the promoted operand:

unsigned char a = 0xf0;

printf("%x\n", ~a);

Assuming a 32-bit int, how many f does it print?

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 30 / 33

js@cs.lth.se

Answer

First 11110000 is promoted to become:
00000000000000000000000011110000 i.e. 24 leading zeroes.
Bitwise complement results in 11111111111111111111111100001111

Printing this as a hex number results in ffffff0f. i.e. seven f.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 31 / 33

js@cs.lth.se

Another quiz

Assume 255 is the largest value of an unsigned char.
What does the following print?

unsigned char a;
int b;

a = 255;
b = a + 1;

printf("%d\n", b);

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 32 / 33

js@cs.lth.se

Answer

The a is promoted to an int and 1 is added to 255 so the output
becomes 256.
However, if we then do:

a = b;

printf("%u\n", a);

The output will be 0.
Assume an unsigned integer type is n bits wide.
In the conversion at the assignment, the value stored in an unsigned
integer always is x mod 2n, where x is the value of the expression.
For signed integers, if the value cannot be represented it is
implementation defined what happens but usually as many bits of the
expression that fits are stored.
There is no overflow at a conversion — they can occur in expressions
and will be discussed in Lecture 5.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 33 / 33

js@cs.lth.se

