
Recall: Pointers

int x = 12;
int *p;
int main()
{

p = &x;
*p = 13;
return x * 2;

}

A pointer is just a variable and it can hold the address of another
variable.
When p points to x, writing *p accesses x.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 1 / 27

js@cs.lth.se

Recall: Memory layout

instruction/data Java comment
0 STORE 6 at 7 MEMORY[7] = 6 &x is put in element 7, ie p
1 READ from 7 into R R = MEMORY[7] read data in p: R=6
2 STORE 13 at R MEMORY[R] = 13 *p = 13
3 READ 6 into R R = MEMORY[6] fetch the value of x
4 MUL 2 R = R * 2 multiply x and R
5 RETURN return R
6 12 x lives here
7 0 p lives here

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 2 / 27

js@cs.lth.se

Function calls and local variables

When you call a function or method, all the local variables must be
stored somewhere.
It is a convention to put them at the end of the memory array.
The local variables of the main function are put at the very end of the
array.
When main calls a function, its local variables are put just before
main’s.
In general, when a new function starts running, it puts its local
variables at the last (highest index) unused memory array elements.
This works like a stack of plates: main is at the bottom and you put
newly called functions on the plate at the top.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 3 / 27

js@cs.lth.se

The stack

int main() int f(int a) int g(int a)
{ { {

int x = 12; int b = a+1; return a + 3;
return f(x); return g(b+2); }

} }

1073741820 15 a in g lives here.
1073741821 13 b in f lives here.
1073741822 12 a in f lives here.
1073741823 12 x in main lives here.

When a function returns, it deallocates its memory space.
This is managed by the compiler which uses a register for holding the
current free memory index, called the stack pointer.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 4 / 27

js@cs.lth.se

More about pointers

In Java, you have used pointers all the time, but they are called object
references.
Suppose you have Link p, then p is a pointer.
In Java, pointers can only point at objects.
The address of some object is, as you might know, the location in
memory where that object lives, ie just an integer number.
In Java, new returns the address of a newly created object.
In C, new is a normal function and is called malloc.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 5 / 27

js@cs.lth.se

More about pointers

In C, but not in Java, the programmer can ask for the address of
almost anything and thus get a pointer to that object (or function).
To change the value of a variable in a function, you need to pass the
address of the variable as a parameter to the function:

void f(int* a) void g()
{ {

*a = 12; int b;
}

f(&b);
}

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 6 / 27

js@cs.lth.se

More about pointers

If the type of the variable is a pointer, then you will need two stars:

void f(int** a) void g()
{ {

a = NULL; int b;
}

f(&b);
}

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 7 / 27

js@cs.lth.se

Class in Java vs Struct in C 1(4)

C has no classes!
C has structs which are Java classes with everything public and no
methods.

struct a { // a i s a tag .
int b;
int c;

} d; // d i s a var iab le i d e n t i f i e r .

Struct names have a so called tag which is a different name space
than variables and functions: so the above declares a struct a which
is a type and a variable d.
If we write Link p in Java we declare p to be a reference but not the
object itself whereas s above is the real object, or data.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 8 / 27

js@cs.lth.se

Class in Java vs Struct in C 2(4)

In Java we can declare a List class something like this:

class List {
List next; // Next i s a reference
int a;
int b;

};

next above only holds the address of another object but next is not a
List object itself. The list does not contain a list.
Java let’s you use pointers conveniently without giving you too much
head ache.
C does not.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 9 / 27

js@cs.lth.se

Class in Java vs Struct in C 3(4)

We cannot write the following in C:

struct list_t {
struct list_t next; // Compilation error ! !
int a;
int b;

};

It is impossible to allocate a list within the list!
We really want to declare next to simply hold the address of a list
object.
In C this is done as: struct list_t* next; which makes next a
pointer.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 10 / 27

js@cs.lth.se

Class in Java vs Struct in C 4(4)

The following is correct in C:

struct list_t {
struct list_t* next;
int a;
int b;

};

After going into pointers in more detail we will see how to avoid
typing struct list_t more than twice using typedef.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 11 / 27

js@cs.lth.se

More about pointers

To return multiple values in Java, you create and return an extra
object.
Option 1 in C: use a plain struct which is allocated on the stack.
Option 2 in C: Pass additional arguments as pointers (preferable).

struct s f() void g(int* x, int* y, int* u)
{ {

struct s a;
a.x = ...; *x = ...;
a.y = ...; *y = ...;
a.u = ...; *u = ...;
return a; }

}

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 12 / 27

js@cs.lth.se

Creating another name of a type

The typedef command creates another name for the specified type:

typedef int integer;
integer a,b;

typedef struct list_t list_t; // l i s t_t i s a type .

struct list_t {
list_t* next;
int a;
int b;

};

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 13 / 27

js@cs.lth.se

More about typedef

typedef struct _list_t list_t;
struct _list_t {

list_t* next;
int a;
int b;

};

Two errors: starting a tag (or identifier) with an underscore is
permitted only for compiler and library implementors.
There is no need to invent two identifiers here: call both the typedef
name and the tag the same thing!

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 14 / 27

js@cs.lth.se

C has row-major matrix memory layout

int c[3][4] = { { 1, 2, 3, 4}, { 5, 6 }, { 7 } };
int i, j;
for (i = 0; i < 3; i++)

for (j = 0; j < 4; j++)
x += c[i][j];

In a two-dimensional array, one row is layed out in memory at a time,
ie row-major.
Could also be called ”rightmost index varies fastest”.
The elements c[i][j] and c[i][j+1] are next to each other.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 15 / 27

js@cs.lth.se

Arrays as parameters

int fun(int c[3][4])
{

printf("%zu %zu\", sizeof c, sizeof c[0]);
}

If the output is ”4 16”, what conclusions can we draw about the size of
a pointer and the size of an int?
Answer: both are four bytes.
The variable c in the function is a pointer: int (*c)[4].

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 16 / 27

js@cs.lth.se

Representation of array references

a[i] is represented as *(a+i)

int main(void)
{

int a[10], *p, i = 3;

/∗ the fol lowing are equivalent : ∗/

&a[i] == a+i;

p = a; p[i] == a[i];

p = a+i; p[0] == *p;

return 0;
}

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 17 / 27

js@cs.lth.se

Multidimensional arrays in C

The language has no concept of multidimensional arrays.
Instead you simply use arrays of arrays.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 18 / 27

js@cs.lth.se

Arrays of arrays

double m[3][4];
double x[2][3][4][5];

So m is an array with three elements, where each element is an array of
four doubles.
x has two elements.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 19 / 27

js@cs.lth.se

Multidimensional arrays with calloc

Suppose we want an m × n matrix from calloc. How do we do?
A one-dimensional array is declared as: double* a.
Here a is a pointer which points to the start of the calloc-ed memory.
A two-dimensional matrix, can be declared as double** m.
But how can we allocate memory for it???
First allocate an array which can hold m pointers to the rows,
and then allocate memory for each row.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 20 / 27

js@cs.lth.se

More from previous slide

double** make_matrix(int m, int n)
{

double** a;
int i;

a = calloc(m, sizeof(double*));
for (i = 0; i < m; i += 1)

a[i] = calloc(n, sizeof(double));
return a;

}

Now we can write double** m = make_matrix(3, 4);

We can access the elements as m[i][j].

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 21 / 27

js@cs.lth.se

Alternatives

Instead of doing m + 1 calls to calloc, we can make one big:

double* a = calloc(m * n, sizeof(double));

Unfortunately, we cannot use it as a two-dimensional matrix. Assume
we want a[i][j]:

for (i = 0; i < m; i++)
for (j = 0; j < n; j++)

a[i * n + j] = ...

The row number is determined by i and each row has n elements.
We cannot write a[i][j] since the type of a[i] is a double and not
an array.
We will return to matrices in a later lecture and explain Examples
1.4.10 and 1.4.11 which are more advanced.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 22 / 27

js@cs.lth.se

malloc/calloc/realloc/free

The data allocated by void* calloc(size_t count, size_t
size) is initialized to zeroes.
There is an alternative function void* malloc(size_t size)
which leaves the data uninitialised.
Using malloc but forgetting to initialize the data leads to painful bugs.
You will often notice that the data is already zeroed by malloc but
that is only by accident (by chance).
The function void* realloc(void* ptr, size_t size) tries to
extend (or shrink) the memory area pointed to by ptr, and if that is
not possible it allocated new memory and copies to old content. Why
can that be dangerous ?

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 23 / 27

js@cs.lth.se

Lists in C

There are of course various kinds of lists, eg:
Single linked,
Single linked, with header pointing to the end (instead of having data).
Null terminated double linked,
Circular double linked.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 24 / 27

js@cs.lth.se

An example circular double linked list

typedef struct list_t list_t;

struct list_t {
list_t* succ;
list_t* pred;
void* data;

};

Without the typedef we must write struct list_t everywhere.
By circular is meant that the head’s predecessor points to the last
node and the successor of the last node points to the head.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 25 / 27

js@cs.lth.se

Making a list node

list_t* new_list(void* data)
{

list_t* list;

list = malloc(sizeof(list_t));

list->succ = list; // (∗ l i s t) . succ = l i s t ;
list->pred = list; // (∗ l i s t) . pred = l i s t ;
list->data = data; // (∗ l i s t) . data = data ;

return list;
}

The arrow is a shorthand for (*list). and was added to C very early.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 26 / 27

js@cs.lth.se

Freeing of a list

void free_list(list_t** head)
{

list_t* h = *head; // better than using ∗ l i s t below .
list_t* p;
list_t* q;
if (h == NULL)

return;
p = h->succ;
while (p != h) {

q = p->succ;
free(p);
p = q;

}
free(p);
*head = NULL;

}

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 27 / 27

js@cs.lth.se

