
EDAA25 C Programming

Welcome to this course!
Three assignments — they must be correct before you are allowed to
write the exam.
No grades on the assignments and you can try as many times as you
wish.
Hand in source code through email to edaa25@cs.lth.se.
Write both your name and your social security number on your
assignments.
Exam with no help (i.e. no C book either).
Literature: Skeppstedt/Söderberg: ”Writing Efficient C Code: A
Thorough Introduction”

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 1 / 28

js@cs.lth.se

Seven lectures

F1 Today: introduction to C
F2 malloc and free, strings, lists
F3 Types, conversions, linkage
F4 Declarations
F5 Expressions and statements
F6 The C preprocessor
F7 The C library

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 2 / 28

js@cs.lth.se

Hints for passing the course

Do the programming assignments with the help of GDB and Valgrind
Of course you can discuss things with friends or me if you want to.
Learn at least the meaning of each keyword.
Study the book and foremost the examples — based on which grade
you aim at. See the reading advice.
Ask questions to the lecturer at his office hours — 12.30 – 13.00 every
week-day.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 3 / 28

js@cs.lth.se

Principles of the C Programming Language

Trust the programmer
Don’t prevent the programmer from doing what needs to be done
Keep the language small and simple if you know what you are doing
Provide only one way to do an operation
Make it fast, even if it is not guaranteed to be portable
Support international programming

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 4 / 28

js@cs.lth.se

Your lecturer’s relationship with C

C is great but not ideal for everything. C is my default language since
1988. Just like Lisp and Prolog, it’s beautiful because it’s powerful and
has few language features.
I have written the second ISO validated C99 compiler (EDG was first).
I will not try to convince you that C ”is best” because there is no such
thing as a best language — see next slide.
I’m certain C will remain as popular and important as it is now well
beyond the next 50 years — the popularity is increasing of this 40-year
old language.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 5 / 28

js@cs.lth.se

Some thoughts on how to select the language for a project

External requirements.
Availability of good compilers and their price.
Availability of competent programmers in that language.
Availability of required third party libraries.
Interoperability with other languages.
If your software intended to survive the death of language X, don’t
use X.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 6 / 28

js@cs.lth.se

Writing a C program

#include <stdio.h>

int main(int argc, char** argv)
{

printf("hello, world\n");
return 0;

}

A Java methods is called a function in C.
A C program must have a main function.
A function must be declared before it is used.
All functions are at file scope, i.e. not declared in a class as in Java.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 7 / 28

js@cs.lth.se

The C Preprocessor

The #include <stdio.h> includes a file with a declaration of printf.
directives in a C file are performed by the C preprocessor before the
compiler starts.
You can run the preprocessor by typing cpp.
The preprocessor can include files and deal with macros, eg INT_MAX
is the largest number of type int.
Notice that cpp knows nothing about C syntax.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 8 / 28

js@cs.lth.se

Compiling a C program

In this course we will use the GNU C compiler, called gcc.
To compile one or more C files to make an executable program type
gcc hello.c

The command gcc will first run cpp, then the C compiler, and then
two more programs called an assembler and a link-editor.
Later in the course you will learn about assembler and the operating
system course you can learn about link-editors.
For this course, gcc fixes takes care of the link-editor and tells it to
produce an executable file.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 9 / 28

js@cs.lth.se

Running a C program

By default the executable file (made by typing gcc hello.c) is called
a.out.
To execute it in Linux (or MacOS X, or another UNIX), type ./a.out.
You can tell gcc that you want a certain name: gcc hello.c -o
hello.
Now you type ./hello.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 10 / 28

js@cs.lth.se

Separate compilation

If you have many big files, it is a waste of time to recompile all files
every time.
You can tell gcc to compile a file and save it in a so called object file
(has nothing to do with object-oriented programming).
gcc -c hello.c

gcc hello.o

The above two lines are identical to gcc hello.c but useful if you
have many files. The second line should then contain all .o files.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 11 / 28

js@cs.lth.se

Primitive types

Types such as int, float etc are sometimes called primitive types.
In Java the size of each primitive type is specified which is necessary
for making Java portable.
In C the sizes are specified only by their minimum sizes.
A char is at least 8 bits.
An int is at least 16 bits.
An long is at least 32 bits.
An long long is at least 64 bits.
By including <stdint.h> we can use types with specified widths — if
supported by the compiler.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 12 / 28

js@cs.lth.se

Ranges and not widths

Actually, except for char the other primitive types are not specified by
their widths but by their ranges.
By including <limits.h> we can find the number of bits in a char in
CHAR_BIT.
The minimum ranges for some types are:

signed char: −127 . . . 127.
unsigned char: 0 . . . 255.
signed short: −32767 . . . 32767.
unsigned short: 0 . . . 65536.
signed int: −32767 . . . 32767.
unsigned int: 0 . . . 65536.

The reason the minimum value for example for a signed char is not
−128 is that some machines don’t use that range.
The actual ranges are also specified in <limits.h>.
In C we also have unsigned integer types — in Java only char is an
unsigned type.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 13 / 28

js@cs.lth.se

Example of I/O: scanf and printf

#include <stdio.h>
int main(int argc, char** argv)
{

int a;
float b;
double c;

scanf("%d %f %lf", &a, &b, &c);
printf("%lf\n", a + b + c);

}

%d for int, %f for float, and %lf for double.
The program will read three numbers from input and print the sum.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 14 / 28

js@cs.lth.se

More about the previous example

In the call to the function scanf, we need & to tell the compiler that
the variables should be modified by the called function.
This does not exist in Java. You cannot ask another method to modify
a number passed as a parameter to the method.
Other useful format-specifiers include:

%x for a hex number (base 16),
%s for a string,
%c for a char,

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 15 / 28

js@cs.lth.se

Writing to files in C

#include <stdio.h>
int main(int argc, char** argv)
{

int a = 1;
float b = 2;
double c = 3;
FILE* fp;

fp = fopen("data.txt", "w");
fprintf(fp, "%d %f %lf\n", a, b, c);
fclose(fp);
return 0;

}

This will create a new file on your hard disk.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 16 / 28

js@cs.lth.se

Reading from files in C

#include <stdio.h>
int main(int argc, char** argv)
{

int a;
float b;
double c;
FILE* fp;

fp = fopen("data.txt", "r");
fscanf(fp, "%d %f %lf", &a, &b, &c);
fclose(fp);
return 0;

}

Note again the & since fscanf will modify the variables.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 17 / 28

js@cs.lth.se

The size of an object

When we allocate memory for an array in Java, we can say:

b = new int[n];

The Java compiler knows the size of an int.
That knowledge has also the C compiler, but the C compiler is not
involved in allocating memory on the heap — where all Java objects
are stored.
That is done using library functions as we will see.
Therefore there is an operator in C to ask for the size of a type:
sizeof.

int a;

sizeof a;
sizeof(int)

The type of a size is some unsigned integer type, called size_t.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 18 / 28

js@cs.lth.se

I/O with the type size_t

size_t n;

Should we use %d with printf to print n?
No, %d is wrong since size_t is an unsigned type.
Should we use %u ?
No, that may be too small.
Can we use %llu like this:

printf("n = %llu\n", (unsigned long long)n);

Yes, but that is often a waste.
We should use %zu like this:

printf("n = %zu\n", n);

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 19 / 28

js@cs.lth.se

Two ways to make arrays in C

#include <stdio.h>
#include <stdlib.h>
int main(int argc, char** argv)
{

int a[10], i;
size_t n;
int* b;

sscanf(argv[1], "%zu", &n); // run as $ a . out 10
b = calloc(n, sizeof(int)); // b = new int [n] ;

for (i = 0; i < n; i += 1)
b[i] = i;

free(b);
return 0;

}

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 20 / 28

js@cs.lth.se

Explanation of the previous slide

The a array is allocated with other local variables.
Note that a is a ”real” array.
On the other hand, b is like an array in Java for which you must
allocate memory yourself. Use new in Java and eg calloc in C.
Java automatically takes care of deallocating the memory of objects.
In C you must do it yourself using free.
The variable b is not an array — it is a pointer.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 21 / 28

js@cs.lth.se

Variable length array in C99

int fun(int m, int n)
{

int a[n];
int b[m][n];

}

Before C99 the above was illegal due to m and n are not constants.
In C99 it is OK to write like that but only for local variables.
Most C compilers still only support C89 and thus it may be wise to
stick to that at least sometimes.
In C11, variable length arrays are optional — but supported by GCC.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 22 / 28

js@cs.lth.se

Memory

As you all know, your computer has something called memory.
It is sufficient to view it as a huge array: char memory[4294967296];

It is preferable in the beginning of our study of C to view it as:
int memory[1073741824];

Forget about strings for the moment. Now our world consists only of
ints.
As you know, a compiler translates a computer program into some
kind of language which can be understood by a machine.
That has happened for the software in everybody’s mobile phone.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 23 / 28

js@cs.lth.se

Instructions

You will see more details about it in other courses, but the C program
written for your phone is translated to commands which are numbers
and can be represented as ints.
These ints are also put in the memory.
We can for instance put the instructions at the beginning of the array.
The instructions will occupy a large number of array elements.
No problem — our array is huge.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 24 / 28

js@cs.lth.se

Global variables in memory

int x = 12;
int main()
{

return x * 2;
}

We also put the variable x in the memory.
This program will have a few instructions for reading x from memory,
multiplying with two, and returning the result.
It is a good idea to put x after the instructions: next page

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 25 / 28

js@cs.lth.se

Memory layout

0 READ from 3 into R read the data in x from memory at address 3
1 MUL 2 R = R * 2
2 RETURN return R
3 12 x lives here

The array element where we have put a variable is called its address
The instructions above are not written as integers but rather as
commands to make them more readable.
An instruction is represented in memory as a number however.
It would be too complicated to demand that the hardware should read
text such as MUL — it is easier is to build hardware if there simply is a
number which means multiplication.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 26 / 28

js@cs.lth.se

Pointers

int x = 12;
int *p;
int main()
{

p = &x;
*p = 13;
return x * 2;

}

A pointer is just a variable and it can hold the address of another
variable.
When p points to x, typing *p the machine will access x.
The access will be a write or a read depending on the context.
p = 0; / x is written */
y = *p; /* x is read */
a[*p] = 0; /* x is read and selects where to write */

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 27 / 28

js@cs.lth.se

Memory layout

instruction/data Java comment
0 STORE 6 at 7 MEM[7] = 6 &x is put in element 7, ie p
1 READ from 7 into R R = MEM[7] read data in p: R=6
2 STORE 13 at R MEM[R] = 13 *p = 13
3 READ 6 into R R = MEM[6] fetch the value of x
4 MUL 2 R = R * 2 multiply x and R
5 RETURN return R
6 12 x lives here
7 0 p lives here

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2015 28 / 28

js@cs.lth.se

