
Safety-Critical  
Embedded Systems
EDAN85 Embedded Systems Design -
Continuation (Advanced) Course, Lecture 5

Lecture 3 Contents
Compacted and overview version of the full DTU course on  
Safety-Critical Embedded Systems, by Paul Pop

Terminology

Examples

When to deal with faults?

• forecasting, prevention, removal, tolerance

How to deal with faults?

• redundancy in hardware, information, time, software

A few definitions
safety: system property; will not endanger human life or the
environment

integrity: system property; able to detect and inform about
faults in its own operation

safety-critical system: safety-related system (ensures safety)
or high-integrity system (failure could mean financial loss)

risk: combination of likelihood of an accident (failure) combined
with the severity of potential consequences

Ariane 5 Rocket, 1996

Off course & self-destruct 40s after launch

Cause: overflow due to a 64-bit to 16-bit
conversion, because of reuse of a software
module (used in Ariane 4) related to horizontal
velocity measurement. Both active and
backup computers were affected.

Loss: $500 million (rocket), $7 billion (project)

Therac-25 Radiation
Therapy Machine, 1985

Severe overdose of beta radiation (during treatment)

Cause: race condition (improper concurrency) in the
software controlling interlocking for safety. Hardware
interlocking replaced by this software.

Loss: at least 6 injured, 3 dead

Patriot Missile System, 1991

System fails to intercept incoming missile

Cause: time kept internally in tenths of
seconds (badly represented in binary)
leading to accumulated error and drifting.
After 100h of uptime, the precision error
is 0.34s

Loss: 28 soldiers dead, 100 injured

More Examples…

Mars Orbiter, 1998: crash, discrepancy in units used
for impulse measurement vs. calculation (pound-
seconds vs. newton-seconds). $125 million

Infusion pumps: used to deliver fluids to a patients
body in a controlled manner. FDA (US): 56,000 adverse
reports of incidents including injuries or deaths
(2005-2009).

An encompassing concept:
Dependability

system property;
justifies placing
one’s reliance on it

Availability
Reliability
Safety
Confidentiality
Integrity
Maintainability

Fault prevention
Fault tolerance
Fault removal
Fault forecasting

Faults
Errors
Failures

attributes

means

threats

dependability

• Security: the concurrent existence of (a) availability for authorized users only,  
(b) confidentiality, and (c) integrity

Faults, Errors, Failures
Error

unintended internal
state of the subsystem

Fault
cause of error
(and failure)

Failure
deviation from

intended service

Physical Universe Informational Universe User’s Universe

• electrical shorts
• imperfections in

semiconductors
• unwanted infinite

loops in programs

• stuck at 1/0
• changed memory

contents
• task taking 100% of

CPU

• actuator does not
update (always open)

• wrong data output
• unresponsive systemEx

am
pl

es

Causes of Faults
problems at any stage in the design process can result
in faults within the system

System
failuresErrors

Software
faults

Hardware
faults

Specification
mistakes

Implementation
mistakes

External
disturbances

Component
defects

Failure Modes
Failure domain: value/timing

Failure consistency: consistent (all parts see the same
result) /inconsistent (byzantine)

Failure consequences: benign (loss of utility) / malign
(significantly more severe, catastrophic)

Failure ofteness: permanent/transient (if repeated,
intermittent)

co
mple

te
sys

tem

Design Life-Cycle for  
Safety-Critical Systems

a concern throughout the whole design cycle

remember the V-model? (verification-validation view)

implement

design

Hazard and
Risk analysis

Certification

val
ida

te,
 ve

rify

requirements

Dependability Areas
A. Fault forecasting: how to minimize, by evaluation, the

presence, creation and consequence of faults

B. Fault prevention: how to prevent, by construction, fault
occurrence

C. Fault removal: how to prevent, by validation and verification,
the presence of latent faults

D. Fault tolerance: how to provide, by redundancy, the service
complying a specification despite the occurrence of faults

A. Fault forecasting
Evaluation of the system behavior with respect to fault occurrence.

Qualitative evaluation
identifies, classifies, ranks the failure modes and events that
lead to system failures
Example methods: Failure Mode and Effect Analysis (FMEA),
Fault-Tree Analysis (FTA)

Quantitative evaluation

evaluates in terms of probabilities the extent to which some the
dependability attributes are satisfied (measures dependability)
Example methods: Markov chains, reliability block diagrams

An Example: (qualitative) 
Fault-Tree Analysis

construct a fault-tree for
an automotive brake fluid
warning lamp

the event is lamp failing
to be lit when brake fluid
is low

Intermezzo:  
more useful terms

Reliability: the probability of a system/component functioning correctly
over a period of time under a given set of operating conditions

Mean Time to Failure (MTTF): the expected duration the system will
operate before the first failure

Mean Time to Repair (MTTR): the average time required to repair the
system

Mean Time Between Failures (MTBF) = MTTF + MTTR

Availability: the probability that the system will be functioning correctly
at any point in time = MTTF/MTBF

An Example: Reliability Analysis of
Triple Modular Redundancy (TMR)

probability of a module working correctly: R(t) 
probability of failing: 1-R(t)

TMR system reliability

For three identical modules

The voter is a very simple module, allowing for a non-redundant unit

Reliability Analysis for
Arbitrary Systems

combinations of series/parallel compositions can be reduced to a single
reliability measure in an easy way
other methods (using paths) for non-series/parallel compositions
sometimes bounds are enough, if exact values are hard to compute

series of modules: none should fail

parallel modules: at least one is OK
5,7 and
6,8

2,3,4 10,11 and 9

Finally 1 and rest:  
0.99

B. Fault prevention
Use quality control techniques to avoid faults at construction time.  
(Controlled Design Processes, Guidelines, Standards)

Software
structured/object oriented programming
information hiding/modularization
support (tools) for compilation/run-time (e.g. GC)

Hardware
rigorous design rules
shielding/foolproof packaging
radiation hardening

Note: malicious faults can also be prevented (e.g. firewalls)

C. Fault removal
Verification: “Are building the system right?”

Static: does not exercise the system (inspections, walkthroughs,
model checking)

Dynamic:  
symbolic execution (inputs are symbolic), testing (actual inputs)

Fault injection: improve test coverage by forcing faults (in particular
error handling)

Validation: “Are we building the right system?”

Checking the specification

D. Fault tolerance
The ability of a system to continue operating correctly even when one
or more components have failed.

Masking: sufficient redundancy may allow for recovery without
explicit error detection

Reconfiguration: eliminating a faulty entity from the system and
restoring the system to operational state

1. Error detection: recognizing that an error occurred
2. Error location: identifying the module with the error
3. Error containment: preventing errors from propagating
4. Error recovery: regaining operational status

The concept of redundancy
Redundancy is the addition of information, resources, or time
beyond what is needed for normal system operation

Example for a digital filter
1. software redundancy: lines of code to perform validity checks
2. hardware redundancy: if more memory is needed for checks
3. time redundancy: each filter calculation performed twice to

detect (transient) faults
4. information redundancy: using a parity check bit in the output

AD converter DA converterMicroprocessor
input output

Hardware redundancy
Passive redundancy: employ extra hardware to instantly
mask errors
• M-of-N and voting: systems with N identical modules, at

least M need to function properly

Active (dynamic) redundancy: no fault masking, instead
detect, locate and recover

• Standby sparing, duplication with comparison

Hybrid redundancy: a combination of the above

M-of-N example: (passive) 
Triple Modular Redundancy

Module 1

Module 2

Module 3

Voter

Single point of failure

Module 1

Module 2

Module 3

Voter

Voter

Voter

Triple the voters

Standby sparing (active)
One module is operational while
one or more modules are spares.

error detection used to
identify when a module is faulty

error location is used to
determine which module is
faulty

faulty modules are removed
and replaced by a spare

The choice of hardware
redundancy…

Active: when temporary erroneous results are
acceptable; most important is that the system can
return to operational state in short enough time 
(e.g. satellite systems)

Passive: critical-computations where momentary
erroneous outputs are not acceptable

Hybrid: applications requiring extremely high
integrity of the computations

In
cr

ea
sin

g
Co

st

Information redundancy
Encode (decode) data using redundant bits in order to achieve
detection/correction of (bit) faults.

Typical codes:

checksum codes (e.g. parity)

m-of-n codes

Berger codes

Hamming codes

…

Time redundancy

Recomputing/resending the same results (possibly in a
different way) in order to check for faults.

Uses fewer resources than hardware and information
redundancy, at the expense of more time (which may
be possible in some applications)

Can address transient or permanent faults

Transient fault detection

computation

time
store
result

computation store
result Compare Error signal

computation store
result

…

Identical computations are repeated over time.

Permanent fault detection

used to detect permanent errors in the module performing the
computation

second computation uses recoded data (swap operands, shifts,…)

time

computation

Compare
Error signal

computation store resultencode
data

decode
result

store result

Software fault-tolerance
Software almost inevitably contains defects/bugs

Formal proof of correctness:  
Not practical for large code bases…

Instead, use “software fault-tolerance”:

acceptance tests, timing checks:  
output in range, in time, inputs in range
single-version vs. N-version programming:  
run a number of versions, developed by independent
teams

Checkpointing
Long running applications may fail at any time: time is
wasted if a fault is only detected at the end

Checkpoint: a snapshot of the process state (everything
needed to restart a process from that state)

n+1 timen

process
segment
executing

checkpoint
(verify = OK, save)

checkpoint
(verify = ERR, rollback)

n+1

process
segment n+1
re-executes

Verify: use an oracle (acceptance tests) or run the same
segment on several processors
Issues: how many? where? overhead? distribution?…

There’s More…  
(selfstudy for interested)

Fault causes and fault models

Hazard analysis

Standards and regulations (IEC 61505, SIL)

Fault-tolerant networks

…

Bibliography

Fault-Tolerant Systems, I. Koren and C. M. Krishna,
Morgan Kaufman, 2007 (popular textbook)

Fundamental Concepts of Dependability, A. Avizenis, J.
C. Laprie, et al., 2001 (short article)

Safety Critical Computer Systems, N. Storey, 1996

http://www.ecs.umass.edu/ece/koren/FaultTolerantSystems/

