Safety-Critical
Embedded Systems

—DANSS Embedaded systems Design -
Continuation (Advanced) Course, Lecture 5

| ecture 3 Contents

Compacted and overview version of the full DTU course on
Safety-Critical Embedded Systems, by Paul Pop

= [erminology
»x Examples
x \When to deal with faults?
* forecasting, prevention, removal, tolerance
x How to deal with faults?

* redundancy in hardware, information, time, software

A few definitions

x safety: system property; will not endanger human life or the
environment

= integrity: system property; able to detect and inform about
faults in Its own operation

» safety-critical system: safety-related system (ensures safety)
or high-integrity system (failure could mean financial loss)

® risk: combination of likelihood of an accident (failure) combined
with the severity of potential consequences

Arlane 5 Rocket, 19960

. Off course & self-destruct 40s after launch

x Cause: overflow due to a 64-bit to 16-bit
COoNnversion, because of reuse of a software
module (used in Ariane 4) related to horizontal
velocity measurement. Both active and
backup computers were affected.

x Loss: $500 million (rocket), $7 billion (project)

Therac-25 Radiation
Therapy Machine, 1985

® Severe overdose of beta radiation (during treatment)

x Cause: race condition (improper concurrency) in the
software controlling interlocking for safety. Hardware
interlocking replaced by this software.

» Loss: at least 6 injured, 3 dead

Patriot Missile System, 1991

®x System fails to intercept incoming missile

x Cause: time kept internally in tenths of
seconds (badly represented in binary)
leading to accumulated error and drifting.
After 100h of uptime, the precision error
IS 0.34s

» Loss: 28 soldiers dead, 100 injured

Viore Examples...

= Mars Orbiter, 1998: crash, discrepancy in units used
for impulse measurement vs. calculation (pound-
seconds vs. newton-seconds). $125 million

= [Infusion pumps: used to deliver fluids to a patients
body in a controlled manner. FDA (US): 56,000 adverse
reports of incidents including injuries or deaths
(2005-2009).

AN encompassing concept:

Dependabillity

® System property;
justifies placing
one’s reliance on it

dependability [SSsss

— attributes

— Availability

— Reliability

— Safety

— Confidentiality
___ [ntegrity

— means

___ Maintainability

— Fault prevention
— Fault tolerance
— Fault removal

L_ threats

— Fault forecasting

—— Faults
Errors

. Failures

- Security: the concurrent existence of (a) availability for authorized users only,

(b) confidentiality, and (c) integrity

Faults, Errors, Fallures

Fault —rror Failure
cause of error < unintended internal deviaﬁon from
(and failure) state of the subsystem intended service
Physical Universe Informational Universe User’s Universe
% » electrical shorts e stuck at 1/0
% . . | e actuator does not
O * imperfections in e changed memory A
5 semiconductors contents - vv?on £ oyut lﬁ)’[
® .« unwanted infinite + task taking 100% of < &
LL]

loops in programs CPU * unresponsive system

Causes of Faults

= problems at any stage in the deS|gn process can result
in faults within the System | - v

T . ' - ‘
; :] P 3) : 1

4 e |
N s . AR Y

. b
B-¥0 %
]) j ' \ i Wil
! ! : - .

b
;]
N
¥
oA ~

Fallure Modes

x Failure domain: value/timing

® Failure consistency: consistent (all parts see the same
result) /inconsistent (byzantine)

® Faillure consequences: benign (loss of utility) / malign
(significantly more severe, catastrophic)

® [Failure ofteness: permanent/transient (if repeated,
intermittent)

Design Life-Cycle for
Safety-Critical Systems

® g concern throughout the whole design cycle

® remember the V-model? (verification-validation view)

é\Q)@
? S
QCZ‘« \Q’}Q)
S)
?b 69
D) @)
ay
Certification
Hazard and
Risk analysis
y &S
O
Oé \Q)“
% &
@) &§

implement

Dependabllity Areas

A. Fault forecasting: how to minimize, by evaluation, the
presence, creation and conseguence of faults

B. Fault prevention:; how to prevent, by construction, fault
occurrence

C. Fault removal: how to prevent, by validation and verification,
the presence of latent faults

D. Fault tolerance: how to provide, by redundancy, the service
complying a specification despite the occurrence of faults

A. Fault forecasting

Evaluation of the system behavior with respect to fault occurrence.

= Qualitative evaluation

» |dentifies, classifies, ranks the fallure modes and events that
ead to system failures

= Example methods: Failure Mode and Effect Analysis (FMEA),
~ault-Tree Analysis (FTA)

= Quantitative evaluation

= evaluates in terms of probabilities the extent to which some the
dependability attributes are satisfied (measures dependability)

x Example methods: Markov chains, reliability block diagrams

An Example: (qualitative)
—ault- Iree Analysis

Float switch Indicator lamp

cperate §

fnillre 5

construct a fault-tree for
an automotive brake fluid
warning lamp

* the event is lamp failing s . N\
to be lit when brake fluid v
S low

INntermezzo:
more useful terms

= Reliability: the probability of a system/component functioning correctly
over a period of time under a given set of operating conditions

x Mean Time to Failure (MTTF): the expected duration the system will
operate before the first failure

x Mean Time to Repair (MTTR): the average time required to repair the
system

= Mean Time Between Failures (MTBF) = MTTF + MTTR

= Availability; the probability that the system will be functioning correctly
at any point in time = MTTF/MTBF

An Example: Reliability Analysis of
Triple Modular Redundancy (I MR)

Probability of correct operation = Probability of no failures

+ Probability of only module 1 failing
+ Probability of only module 2 failing

t Probability of only module 3 failing

= probability of a module working correctly: R(t)
probability of failing: 1-R(t)

RrMmr (1) =Ry (1) R2(1) Ra(t) + [1 — Ry ()| Ra(2) R3(2)
®x [MR system reliability + Ri()[1 — Ra(0)|R3(1) + Ri(£)Ra(£)[1 — Rs(0)]

x For three identical modules Rrmr(f) = R’ () + 3R> (1)[1 — Ry ()]

— 31{1:13“] 2R|1:3|::[::'
= [he voter is a very simple module, allowing for a non-redundant unit

Reliability Analysis for
Arbitrary Systems

Module 1

Modules 2, 3 and 4 0.80 =

Modules 5 and 6 0.90 ..4 w N z | R R(t) =1 —[1 = Ry(D][1 = Ra(2)]
Modules 7 and 8 0.95 K : 1 1 > 0o =] —[1 —0.971][1 —0.94]
Module 9 (.94 ks gl TR . : e = ().998

Finally 1 and rest:
0.99

x combinations of series/parallel compositions can be reduced to a single
reliability measure in an easy way

= Oother methods (using paths) for non-series/parallel compositions

® sometimes bounds are enough, if exact values are hard to compute

B. Fault prevention

Use quality control technigues to avoid faults at construction time.
(Controlled Design Processes, Guidelines, Standards)

x Software

x structured/object oriented programming
x nformation hiding/modularization
= support (tools) for compilation/run-time (e.g. GC)

x Hardware

® rigorous design rules
= shielding/foolproof packaging
= radiation hardening

x Note: malicious faults can also be prevented (e.g. firewalls)

C. Fault removal

x Verification: “Are building the system right?”

® Static: does not exercise the system (inspections, walkthroughs,
model checking)

= Dynamic:
symbolic execution (inputs are symbolic), testing (actual inputs)

= Fault injection: improve test coverage by forcing faults (in particular
error handling)

x Validation: “Are we building the right system?”

x Checking the specification

D. Fault tolerance

The abllity of a system to continue operating correctly even when one
Oor more components have failed.

» Masking: sufficient.redundancy:may allow for recovery without
explicit error detectioii

» Reconfiguration: eliminating a faulty entity from the system and
restoring the system to operational state

1. Error detection: recognizing that an error occurred
. Error location: identifying the module with the error

2
3. Error containment: preventing errors from propagating
4, Error recovery: regaining operational status

The concept of redunaancy

x Redundancy is the addition of information, resources, or time
beyond what is needed for normal system operation

= Example for a digital filter

1. software redundancy: lines of code to perform validity checks
2. hardware redundancy: it more memory is needed for checks

3. lime redundancy: each filter calculation performed twice to
detect (transient) faults

4, information redundancy: using a parity check bit in the output

INPUT T Em— OUITOUL
s > Microprocessor > DA converter >

Hardware redundancy

= Passive redundancy. employ extra hardware to instantly
mask errors

 M-of-N and voting: systems with N identical modules, at
least M need to function properly

= Active (dynamic) redundancy: no fault masking, instead
detect, locate and recover

o Standby sparing, duplication with comparison

= Hybrid redundancy: a combination of the above

)nVVJ
& =
=
92 3
N &
M

S5
<5
A
D
= 5
C S
P
O O
=
o O
° 2
=

Triple the voters

Single point of failure

Standby sparing (active)

One module is operational while
. | one or more modules are spares.

. | | = error detection used to
identify when a module is faulty

no1 | = x error location is used to

Switck

A | determine which module is

4_‘2 : faulty

Detoction x faulty modules are removed
} and replaced by a spare

Module 2

1he choice of hardware
redundancy...

Active: when temporary erroneous results are
acceptable; most important is that the system can
return to operational state in short enough time
(e.g. satellite systems)

Passive: critical-computations where momentary
erroneous outputs are not acceptable

Hybrid: applications requiring extremely high
integrity of the computations

Increasing Cost

Information redundancy

Encode (decode) data using redundant bits in order to achieve
detection/correction of (bit) faults.

Typical codes:
® checksum codes (e.g. parity)
= M-0f-n codes
x Berger codes

= Hamming codes

11me redundancy

Recomputing/resending the same results (possibly In a
different way) in order to check for faults.

» Uses fewer resources than hardware and information
redundancy, at the expense of more time (which may
be possible in some applications)

x Can address transient or permanent faults

Transient fault getection

ldentical computations are repeated over time.

Permanent fault detection

tie

~ result

= Used to detect permanent errors in the module performing the
computation

® second computation uses recoded data (swap operands, shifts,...)

Software fault-tolerance

Software almost inevitably contains defects/lbbugs

= Formal proof of correctness:
Not practical for large code bases...

= [nstead, use ‘“software fault-tolerance”:

® gcceptance tests, timing checks:
output In range, In time, INPUts In range

® single-version vs. N-version programming:
run a number of versions, developed by Independent
teams

Checkpointing

= | ong running applications may fail at any time: time is
wasted if a fault Is only detected at the end

x Checkpoint: a snapshot of the process state (everything
needed to restart a process from that state)

Process checkpoint checkpoint process
segment (verify = OK, save) (verify = ERR, rollback) segment n+1
executing o » %f«’ re-executes

= \erify: use an oracle (acceptance tests) or run the same
segment on several processors

® [ssues: how many? where? overhead? distribution?...

There's More...
(selfstudy for interested)

x [Fault causes and fault models
» Hazard analysis

®x Standards and regulations (IEC 61505, SIL)

»x Fault-tolerant networks

Bibliography

» Fault- Tolerant Systems, |. Koren and C. M. Krishna,
Morgan Kaufman, 2007 (popular textbook)

®x Fundamental Concepts of Dependabillity, A. Avizenis, J.
C. Laprie, et al., 2001 (short article)

x Safety Critical Computer Systems, N. Storey, 1996

http://www.ecs.umass.edu/ece/koren/FaultTolerantSystems/

