
Testing and Debugging
EDAN85 
Advanced Embedded Systems Design Course

Terminology
• Testing: making sure that we’re building the

system right.  
(Verification - building the right system)

• Debugging: if it does not, figure out the problem
and solve it.

• Offline: ...while the system is not running (or
running on a host)

• Runtime/online: ...on the running system (or
running on target)

Methods overview

Hardware Software

Simple
signals-to-pins

(LEDs, multimeter,
oscilloscope)

code inspection,
printouts

Complex,
Tool based

simulator (ISim),

on-chip signal

capture (Chipscope)

host debugging,
target debugging

(xmd)

Simple, in hardware
Route simple (not bus) signals to free/certain FPGA pins:

• LEDs for signals that do not change often, or need to be
mainly in one state or another, or just need to be checked
that they are driven by someone: i.e. RESET signals

• use a voltmeter to check the level, or average value (PWM
like behavior): CLOCK, PWM, GND, VCC,...

• use an oscilloscope/logic analyzer when exact timing is
essential: VGA synchronization signals, CLOCK,...

Simple, in software
use debug printouts to identify which phases the
program passes through

• is it entering main?
• is the Hw setting up properly? (check error codes)
• are the registers loaded with the right values? 

(write/read peripheral registers)
use debug levels to separate messages
#define DBG(L, txt) if(DBGLVL >= L) print(txt)
use the provided self-tests for the IPs, or  
write your own tests

Complex, in hardware

Offline method: VHDL/Verilog simulation 
Strongly recommended!

• for custom hardware IPs (test+debug) 
(although possible for whole systems, it is not recommended)

• write your own VHDL test modules to cover as much
as possible of the required behavior

• low level simulation (post place&route) can detect
timing problems very difficult to discover otherwise!

Complex, in hardware
Online signal monitoring: Integrated Logic Analyzer

• easy to set up, in-system extra cores
• simple signals or busses
• JTAG based PC GUI
• instant or (simple/repeated) trigger based sampling

(with sequencers)
• integration with software debugging/MDM

Essential tool for runtime debugging of custom hardware!

Complex, in software
1. in cross-platform development:  

debug using the environment on the host machine

2. debug on the target machine:

• the processor must have support for debugging
(exceptions)

• peripherals must have support for debugging
(freeze signal)

• compile applications with debug information

Further reading/to do

working with the MDM and ILA cores for debugging
and monitoring signals

debugging using SDK and Vivado Logic Analyzer

Follow the Xilinx Embedded Processor Design (UG940)
Lab3 (…but adapt it to your system!)

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_3/ug940-vivado-tutorial-embedded-design.pdf

