
Software in
Embedded Systems
EDAN85: Lecture 4

Contents

embedded software requirements

support for developers, an overview

a. standalone applications

b. operating systems and kernels

c. virtualization

d. drivers

Embedded software

very simple 
(e.g. temperature sensor:
polling, single processor, single
thread, few lines of assembly
code)

Large variation in complexity!

very complex 
(e.g. mobile phone: multiple
processor, multi-threaded, powerful
operating systems, thousands of
lines of code, legacy libraries)

Embedded software

mostly harmless 
(e.g. Gameboy: quality of
service oriented, replaceable,
failure is annoying at most)

Large variation in requirements!

highly critical 
(e.g. fly-by-wire: hard real-time,
safety critical, redundant,
certification, offline modeling and
testing)

An overview
Embedded systems usually must:

work with the environment  
(monitor, process, control)

keep some sort of timing  
(deadlines, QoS, control quality)

use limited resources, meaning...  
(power, processing, bandwidth, memory)

...have a low cost  
(development, fabrication, maintenance,...)

A few requirements
Embedded software usually needs to:

1. execute concurrent activities  
(multiprogramming, resource sharing)

2. handle various I/O at different levels  
(devices, drivers, polling or interrupts)

3. detect faults, fail gracefully (exceptions)

4. support timing (RT, deadlines, priorities)

5. be easy to develop, verify, manage (tools)

1. Concurrency
Processes (Tasks)

running programs/executables

separate code/data

few shared resources

appear as executing at the
same time

can communicate with each
other

Status

Stack

Code
(Mem)

Data
(Mem)

Resources
CPU

Status

Stack

Code
(Mem)

Data
(Mem)

Resources
CPU

Concurrency: Contexts
executing (scheduling) tasks on one processor

A. multi-programming (events)

B. time sharing (timer)

C. cooperative multitasking (yield control)

D. real-time (fixed points)

context switch

context = state, registers (program counter,
stack pointer/frame), held resources, etc.

Status

Stack

Code
(Mem)

Data
(Mem)

Resources

CPU

Status

Stack

Code
(Mem)

Data
(Mem)

Resources

CPU

CPU

Concurrency: Threads

thread = smallest subset of
resources needed for
independent execution

many shared resources
(common code/data)

fast context switch within a
process

Thread
Status

Stack

Code
(Mem)

Data
(Mem)

Resources
CPU

Thread
Status

Stack
Thread
Status

Stack

Concurrency: Types

A. single process single thread - SPST 
(very simple applications)

B. multi-process single thread - MPST

C. single process multi-thread - SPMT 
(may already reside in memory)

D. multi-process multi-thread - MPMT 
(desktop PC: Windows, Linux,...)

SPST

usually a single infinite loop (static/no scheduling, as such)

use polling to handle I/O (non-blocking operations)

no resource sharing

primitive interrupt/exception handlers

Example:  
the default (standalone) configuration for Microblaze systems in XPS

Pseudo-MPST
use several processors with SPST

sharing and synchronization is possible, with some work

• common AXI bus = shared peripherals

• FSL can be used to exchange data

• mutexes, mailboxes, etc.

primitive interrupt/exception handlers

Example: the dual Microblaze in EDAN15 labs

More than one thread
Cases B, C, D require support for:

• scheduling: priorities, queues, timers

• contexts: TCBs, create, save/restore

• data sharing/synchronization: 
locks, shared memory, messages, buffers,...

• protection: memory spaces, access rights, reentrant code

• interrupts/exceptions:  
arithmetic, memory access, I/O, timers, etc.

SPMT

common in many embedded systems since the
applications are fixed, already loaded at boot time!

file systems, if they exist, are used for data only
(images, audio, sensor samples), not programs

 Example: xilkernel, freertos in Xilinx EDK

Many Embedded OS
Linux/Unix

MicroBlaze OSL (Xilinx)
PetaLinux, uCLinux (MicroBlaze support)
Android port (Xilinx ZC702 board)

RTOS (MicroBlaze support)
FreeRTOS (replaces xilkernel)
Nucleus OS, VxWorks - multicore
SynthOS : synthesize your own RTOS (900b footprint)
mbedOS (ARM)
…

http://xilinx.wikidot.com/microblaze-linux
http://www.petalogix.com/
http://www.uclinux.org/
http://www.freertos.org/
http://www.mentor.com/embedded-software/nucleus/
http://www.windriver.com/products/vxworks/
http://www.zeidman.biz/synthos.htm

Hw virtualization
hypervisor (virtual-machine monitor):

• abstracts away the physical platform, offering a standard
virtual platform

• allows multiple OS’s to run concurrently on the same hardware

Hypervisor

OS

T1 T2 T3
Standalone

T4 RTOS

T5 T6

Real Processor Real ProcessorReal Interconnect Real
Platform

virtual comm. structureVP3VP2VP1 VP4 Virtual
Platform

Hw virtualization
advantages:

• simplified development!
• OS developers develop for the abstract hypervisor

hardware, not for each specific platform
• Hw developers port the hypervisor (microvisor) once,

and get the benefit of having many OS running on it
• more robust systems!

drawback: performance penalty
Example: OKL4 microvisor

http://www.ok-labs.com/

2. Handling I/O
To read and output data: essential in embedded systems!

polling (usually single threaded apps):
1. test the peripheral for new data (non-blocking!)
2. handle the new data if it exists
3. move on to other peripherals or activities
4. go back to 1.

interrupts (multi-threaded apps):
1. write a specific function - handler (usually very short)
2. associate it with the desired peripheral (uses interrupts)
3. expect “normal code” to be interleaved with handler calls

I/O types
A. memory mapped I/O (bus I/O)

• located within the normal memory address space
• accessed using regular memory read/writes
• usually offer both polled or interrupt based handling
• some may use DMA to transfer data (become bus masters)

example: gpio, timer on AXI
B. special I/O (port I/O)

• implemented in the processor by specific instructions/lines
example: FSL on MicroBlaze

MB Interrupts Hw

A simplified generic interrupt cycle:
1. Peripheral asserts IRQ
2. CPU detects INT, clears flags  

Handles (also acknowledge IRQ to the peripheral - bus)
3. Peripheral de-asserts IRQ

INTC: priority levels, heterogeneous IRQ signals

Micro
Blaze Periph 1INT IRQ Periph 2INTC

IRQ IRQ

Peripheral Bus

Device Drivers
software packages abstracting away certain hardware
vary in complexity/functionality

A. low level:
• small code library
• allow for fine control (register level access)
• require extensive development from users
B. high level:
• large libraries (and memory footprint)
• easy to use API

More Device Drivers
Must comply both Hw and Sw ends!

• Linux: special way of coding
• Stadalone-Xilkernel/Microblaze:

no big restrictions since there is no complex 
OS on top, only your own application
can be included with your custom IP core  
and distributed along with it for use in EDK

• specific directory structure
• low level driver generated by the Create IP wizard

Sw (OS, app)

driver level 1

level 0

HwHw

logical dd
(OS maker)

Hw

physical dd
(hw maker)

3. Exceptions

Undesired situations, from which the system can recover.
• math: 

divide-by-zero, illegal operand, overflow, underflow,...
• bus timeouts
• memory: 

illegal opcode, unaligned data,...

These may or may not be supported by the framework!

4. Timing
• scheduling, performance meters

@ lowest level: timers
• Hw: usually at least one for the system tick + some WDTs
• Sw: many software timers

@ higher level: priorities
• none (round-robin), static (RM), dynamic (EDF)

@ even higher: deadlines, periods, QoS
• fully rely on the underlaying framework to handle timing

5. Tool Support
• components (IPs, OS, libs, JVMs)
• component creator (Hw & Sw)
• system builder
• assemblers/compilers (C, C++, Java)
• emulators/simulators
• download/configuration/monitoring
• profilers/debuggers

An example: Xilkernel

replaced by
FreeRTOS in

2017.1

Xilkernel overview (I)
POSIX threads API

• pthread_create, join, yield, detach, kill,...
• round-robin or priority scheduling

POSIX semaphores
• sem_init, destroy, wait, trywait, post,...

XSI/POSIX message queues
• msgget, msgctl, msgsnd, msgrcv

XSI/POSIX shared memory
• shmget, shmctl, shmat, shm_dt

POSIX mutex locks
• pthread_mutex_init, destroy, lock, unlock,...

Xilkernel overview (II)
A. dynamic buffer memory management

• faster but less powerful than malloc/free
• bufcreate, bufdestroy, bufmalloc, buffree

B. software timers
• xget_clock_ticks, time, sleep

C. exceptions (limited)
• registered as faults
• faulting threads are killed and the nature of the exception is

reported on the console (in verbose mode)
• custom handlers cannot be registered

D. memory protection (limited)
• automatic + user spec., code/data/io violations, TLB

more on Xilkernel
Initialization

kernel entry point xilkernel_start() in main.c
all user initialization must be done before 
(set up hardware cores)

Thread safety
many library and driver routines are NOT thread safe! (not reentrant,
e.g. printf, sprintf, malloc, free,...)
solution: use locks/semaphores to ensure exclusion

Customization
many parameters (max pthreads, semaphores, sched type)
many modules may be individually included (saves memory) 
On MicroBlaze the kernel takes between 7 and 22kb

Using Xilkernel with MB
1.build a system with the XPS wizard

a. add an xps_timer
b. select to use interrupts for the timer and other peripherals

you will handle (this will add xps_intc core)
2. create your application in SDK

c. add a new Xilinx application
d. select the xilkernel (in stead of standalone) in the wizard
e. select the POSIX threads demo as a base
f. modify and add the pthreads program

3. configure the BSP in SDK
g. select BSP created by the wizard in the step above
h. configure its parameters (STDIN/OUT, timer and intc instance,

add modules, clock frequency, table of static threads)

UG 646 April 19, 2010 www.xilinx.com 37

Interrupt Handling

Interrupt
Handling

Xilkernel abstracts away primary interrupt handling requirements from the user application.
Even though the kernel is functional without any interrupts, the system only makes sense when
it is driven by at least one timer interrupt for scheduling. The kernel handles the main timer
interrupt, using it as the kernel tick to perform scheduling. The timer interrupt is initialized and
tied to the vectoring code during system initialization. This kernel pulse provides software timer
facilities and time-related routines also. Additionally, Xilkernel can handle multiple interrupts
when connected through an interrupt controller, and works with the xps_intc interrupt
controller core. The following figure shows a basic interrupt service in Xilkernel.

The interrupt handling scenario is illustrated in this diagram. Upon an interrupt:

• The context of the currently executing process is saved into the context save area.

• Interrupts are disabled from this point in time onwards, until they are enabled at the end of
interrupt handling.

• This alleviates the stack burden of the process, as the execution within interrupt, does not
use the user application stack.

• This interrupt context can be thought of as a special kernel thread that executes interrupt
handlers in order. This thread starts to use its own separate execution stack space.

• The separate kernel execution stack is at-least 1 KB in size to enable it to handle deep
levels of nesting within interrupt handlers. This kernel stack is also automatically
configured to use the pthread stack size chosen by the user, if it is larger than 1 KB. If you
foresee a large stack usage within your interrupt handlers, you will need to specify a large
value for pthread_stack_size.

This ends the first level of interrupt handling by the kernel. At this point, the kernel transfers
control to the second level interrupt handler. This is the main interrupt handler routine of the
interrupt controller. From this point, the handler for the interrupt controller invokes the user-
specified interrupt handlers for the various interrupting peripherals.

In MicroBlaze processor kernels, if the system timer is connected through the interrupt
controller, then the kernel invisibly handles the main timer interrupt (kernel tick), by registering
itself as the handler for that interrupt.

Interrupt handlers can perform any kind of required interrupt handling action, including making
system calls. However, the handlers must never invoke blocking system calls, or the entire
kernel is blocked and the system comes to a suspended state. Use handlers wisely to do
minimum processing upon interrupts.

Figure 5: Basic Interrupt Service in Xilkernel

IE = 1

IE = 1

IE = 0 -Save complete context;
-Switch to kernel IRQ stack;
-Execute next level of
 interrupt handling.
-If rescheduling is required,
 invoke the scheduler.
-Restore context of the
 currently selected process.

Executing process
gets interrupted

X10229

IE = 1

Resumed process
proceeds

Execute user level
interrupts if any

Xilkernel interrupts
needs at least a timer interrupt (xps_timer)
more can be added with xps_intc  
(xps_gpio, xps_uartlite, xps_spi, ...)
register, unregister, enable, disable, acknowledge

#include "xparameters.h"
#include "xmk.h"
#include <stdio.h>
#include <sys/intr.h>
#include "xgpio.h"

// The driver instance for GPIO Device
XGpio ButtonsInput;
// push buttons value
volatile u32 pbValue;

void* my_main(void) {
// xilkernel is started.
// set up interrupt handlers
setUpButtonsHandler();

// enable interrupts in Microblaze
microblaze_enable_interrupts();

// a simple loop
// to check whether the interrupts work
{
u32 oldB = pbValue;
while(1) {

while(oldB == pbValue) { /* busy wait */ };
xil_printf("buttons pushed %d", pbValue);
oldB = pbValue;

}
return NULL; // never reached

}

An example with GPIO

int main(void) {
// initialize hardware
InitializeButtons();

// start xilkernel
xilkernel_start();

}

void InitializeButtons() {
// initialize GPIO structure
XGpio_Initialize(&ButtonsInput, XPAR_PUSH_BUTTONS_3BIT_DEVICE_ID);
// should ALWAYS check the return status!

//Set the direction for all signals to be inputs
XGpio_SetDataDirection(&ButtonsInput, 1, 0xFFFFFFFF);

// enable GPIO interrupts by bit
XGpio_InterruptEnable(&ButtonsInput, 0xFFFFFFFF);
// enable GPIO interrupts globally
XGpio_InterruptGlobalEnable(&ButtonsInput);

}

void setUpButtonsHandler() {
 // associate interrupt channel with handler in INTC
 register_int_handler(XPAR_XPS_INTC_0_PUSH_BUTTONS_3BIT_IP2INTC_IRPT_INTR,

buttonsHandler, &pbValue);
 // enable interrupt channel in INTC
 enable_interrupt(XPAR_XPS_INTC_0_PUSH_BUTTONS_3BIT_IP2INTC_IRPT_INTR);
}

void buttonsHandler(void *p) {
// read data from the GPIO
(u32)p = XGpio_DiscreteRead(&ButtonsInput, 1);
// clear interrupt in the GPIO
XGpio_InterruptClear(&ButtonsInput, 0xFFFFFFFF);
// ack interrupt to the INTC
acknowledge_interrupt(XPAR_XPS_INTC_0_PUSH_BUTTONS_
3BIT_IP2INTC_IRPT_INTR);

}

OS choices for Nexys4

standalone xilkernel freertos

concurrency - - +++ +++
cross-

development

(portability)

- ++ +++

memory footprint +++ - - -

