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Embedded software

very simple 
(e.g. temperature sensor: 
polling, single processor, single 
thread, few lines of assembly 
code)

Large variation in complexity!

very complex 
(e.g. mobile phone: multiple 
processor, multi-threaded, powerful 
operating systems, thousands of 
lines of code, legacy libraries)



Embedded software

mostly harmless 
(e.g. Gameboy: quality of 
service oriented, replaceable, 
failure is annoying at most)

Large variation in requirements!

highly critical 
(e.g. fly-by-wire: hard real-time, 
safety critical, redundant, 
certification, offline modeling and 
testing)



An overview
Embedded systems usually must: 

work with the environment  
(monitor, process, control) 

keep some sort of timing  
(deadlines, QoS, control quality) 

use limited resources, meaning...  
(power, processing, bandwidth, memory) 

...have a low cost  
(development, fabrication, maintenance,...)



A few requirements
Embedded software usually needs to: 

1. execute concurrent activities  
(multiprogramming, resource sharing) 

2. handle various I/O at different levels  
(devices, drivers, polling or interrupts) 

3. detect faults, fail gracefully (exceptions) 

4. support timing (RT, deadlines, priorities) 

5. be easy to develop, verify, manage (tools)



1. Concurrency
Processes (Tasks) 

running programs/executables 

separate code/data 

few shared resources 

appear as executing at the 
same time 

can communicate with each 
other
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Concurrency: Contexts
executing (scheduling) tasks on one processor 

A. multi-programming (events) 

B. time sharing (timer) 

C. cooperative multitasking (yield control) 

D. real-time (fixed points) 

context switch 

context = state, registers (program counter, 
stack pointer/frame), held resources, etc. 
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Concurrency: Threads

thread = smallest subset of 
resources needed for 
independent execution 

many shared resources 
(common code/data) 

fast context switch within a 
process
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Concurrency: Types

A. single process single thread - SPST 
(very simple applications) 

B. multi-process single thread - MPST 

C. single process multi-thread - SPMT 
(may already reside in memory) 

D. multi-process multi-thread - MPMT 
(desktop PC: Windows, Linux,...)



SPST

usually a single infinite loop (static/no scheduling, as such) 

use polling to handle I/O (non-blocking operations) 

no resource sharing 

primitive interrupt/exception handlers 

Example:  
the default (standalone) configuration for Microblaze systems in XPS



Pseudo-MPST
use several processors with SPST 

sharing and synchronization is possible, with some work 

• common AXI bus = shared peripherals 

• FSL can be used to exchange data 

• mutexes, mailboxes, etc. 

primitive interrupt/exception handlers 

Example: the dual Microblaze in EDAN15 labs



More than one thread
Cases B, C, D require support for: 

• scheduling: priorities, queues, timers 

• contexts: TCBs, create, save/restore 

• data sharing/synchronization: 
locks, shared memory, messages, buffers,... 

• protection: memory spaces, access rights, reentrant code 

• interrupts/exceptions:  
arithmetic, memory access, I/O, timers, etc.



SPMT

common in many embedded systems since the 
applications are fixed, already loaded at boot time! 

file systems, if they exist, are used for data only 
(images, audio, sensor samples), not programs 

 Example: xilkernel, freertos in Xilinx EDK



Many Embedded OS
Linux/Unix 

MicroBlaze OSL (Xilinx) 
PetaLinux, uCLinux (MicroBlaze support) 
Android port (Xilinx ZC702 board) 

RTOS (MicroBlaze support) 
FreeRTOS (replaces xilkernel) 
Nucleus OS, VxWorks - multicore  
SynthOS : synthesize your own RTOS (900b footprint) 
mbedOS (ARM) 
…

http://xilinx.wikidot.com/microblaze-linux
http://www.petalogix.com/
http://www.uclinux.org/
http://www.freertos.org/
http://www.mentor.com/embedded-software/nucleus/
http://www.windriver.com/products/vxworks/
http://www.zeidman.biz/synthos.htm


Hw virtualization
hypervisor (virtual-machine monitor):  

• abstracts away the physical platform, offering a standard 
virtual platform 

• allows multiple OS’s to run concurrently on the same hardware

Hypervisor
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Hw virtualization
advantages: 

• simplified development! 
• OS developers develop for the abstract hypervisor 

hardware, not for each specific platform 
• Hw developers port the hypervisor (microvisor) once, 

and get the benefit of having many OS running on it 
• more robust systems! 

drawback: performance penalty 
Example: OKL4 microvisor

http://www.ok-labs.com/


2. Handling I/O
To read and output data: essential in embedded systems! 

polling (usually single threaded apps): 
1. test the peripheral for new data (non-blocking!) 
2. handle the new data if it exists 
3. move on to other peripherals or activities 
4. go back to 1. 

interrupts (multi-threaded apps): 
1. write a specific function - handler (usually very short) 
2. associate it with the desired peripheral (uses interrupts) 
3. expect “normal code” to be interleaved with handler calls



I/O types
A. memory mapped I/O (bus I/O) 

• located within the normal memory address space 
• accessed using regular memory read/writes 
• usually offer both polled or interrupt based handling 
• some may use DMA to transfer data (become bus masters) 

example: gpio, timer on AXI 
B. special I/O (port I/O) 

• implemented in the processor by specific instructions/lines 
example: FSL on MicroBlaze



MB Interrupts Hw

A simplified generic interrupt cycle: 
1. Peripheral asserts IRQ 
2. CPU detects INT, clears flags  

Handles (also acknowledge IRQ to the peripheral - bus) 
3. Peripheral de-asserts IRQ 

INTC: priority levels, heterogeneous IRQ signals 

Micro 
Blaze Periph 1INT IRQ Periph 2INTC

IRQ IRQ

Peripheral Bus



Device Drivers
software packages abstracting away certain hardware 
vary in complexity/functionality 

A. low level: 
• small code library 
• allow for fine control (register level access) 
• require extensive development from users 
B. high level: 
• large libraries (and memory footprint) 
• easy to use API



More Device Drivers
Must comply both Hw and Sw ends! 

• Linux: special way of coding 
• Stadalone-Xilkernel/Microblaze: 

no big restrictions since there is no complex 
OS on top, only your own application 
can be included with your custom IP core  
and distributed along with it for use in EDK 

• specific directory structure 
• low level driver generated by the Create IP wizard

Sw (OS, app)

driver level 1

level 0

HwHw

logical dd 
(OS maker)

Hw

physical dd 
(hw maker)



3. Exceptions

Undesired situations, from which the system can recover. 
• math: 

divide-by-zero, illegal operand, overflow, underflow,... 
• bus timeouts 
• memory: 

illegal opcode, unaligned data,... 

These may or may not be supported by the framework!



4. Timing
• scheduling, performance meters 

@ lowest level: timers 
• Hw: usually at least one for the system tick + some WDTs 
• Sw: many software timers 

@ higher level: priorities 
• none (round-robin), static (RM), dynamic (EDF) 

@ even higher: deadlines, periods, QoS 
• fully rely on the underlaying framework to handle timing



5. Tool Support
• components (IPs, OS, libs, JVMs) 
• component creator (Hw & Sw) 
• system builder 
• assemblers/compilers (C, C++, Java) 
• emulators/simulators 
• download/configuration/monitoring 
• profilers/debuggers



An example: Xilkernel

replaced by 
FreeRTOS in 

2017.1



Xilkernel overview (I)
POSIX threads API 

• pthread_create, join, yield, detach, kill,... 
• round-robin or priority scheduling 

POSIX semaphores 
• sem_init, destroy, wait, trywait, post,... 

XSI/POSIX message queues 
• msgget, msgctl, msgsnd, msgrcv 

XSI/POSIX shared memory 
• shmget, shmctl, shmat, shm_dt 

POSIX mutex locks 
• pthread_mutex_init, destroy, lock, unlock,...



Xilkernel overview (II)
A. dynamic buffer memory management 

• faster but less powerful than malloc/free 
• bufcreate, bufdestroy, bufmalloc, buffree 

B. software timers 
• xget_clock_ticks, time, sleep 

C. exceptions (limited) 
• registered as faults 
• faulting threads are killed and the nature of the exception is 

reported on the console (in verbose mode) 
• custom handlers cannot be registered 

D. memory protection (limited) 
• automatic + user spec., code/data/io violations, TLB



more on Xilkernel
Initialization 

kernel entry point xilkernel_start() in main.c 
all user initialization must be done before 
(set up hardware cores) 

Thread safety 
many library and driver routines are NOT thread safe! (not reentrant, 
e.g. printf, sprintf, malloc, free,...) 
solution: use locks/semaphores to ensure exclusion 

Customization 
many parameters (max pthreads, semaphores, sched type) 
many modules may be individually included (saves memory) 
On MicroBlaze the kernel takes between 7 and 22kb



Using Xilkernel with MB
1.build a system with the XPS wizard 

a. add an xps_timer 
b. select to use interrupts for the timer and other peripherals  

you will handle (this will add xps_intc core) 
2. create your application in SDK 

c. add a new Xilinx application 
d. select the xilkernel (in stead of standalone) in the wizard 
e. select the POSIX threads demo as a base 
f. modify and add the pthreads program 

3. configure the BSP in SDK 
g. select BSP created by the wizard in the step above 
h. configure its parameters (STDIN/OUT, timer and intc instance, 

add modules, clock frequency, table of static threads)
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Interrupt Handling

Interrupt 
Handling

Xilkernel abstracts away primary interrupt handling requirements from the user application. 
Even though the kernel is functional without any interrupts, the system only makes sense when 
it is driven by at least one timer interrupt for scheduling. The kernel handles the main timer 
interrupt, using it as the kernel tick to perform scheduling. The timer interrupt is initialized and 
tied to the vectoring code during system initialization. This kernel pulse provides software timer 
facilities and time-related routines also. Additionally, Xilkernel can handle multiple interrupts 
when connected through an interrupt controller, and works with the xps_intc interrupt 
controller core. The following figure shows a basic interrupt service in Xilkernel. 

The interrupt handling scenario is illustrated in this diagram. Upon an interrupt:

• The context of the currently executing process is saved into the context save area. 

• Interrupts are disabled from this point in time onwards, until they are enabled at the end of 
interrupt handling. 

• This alleviates the stack burden of the process, as the execution within interrupt, does not 
use the user application stack. 

• This interrupt context can be thought of as a special kernel thread that executes interrupt 
handlers in order. This thread starts to use its own separate execution stack space.

• The separate kernel execution stack is at-least 1 KB in size to enable it to handle deep 
levels of nesting within interrupt handlers. This kernel stack is also automatically 
configured to use the pthread stack size chosen by the user, if it is larger than 1 KB. If you 
foresee a large stack usage within your interrupt handlers, you will need to specify a large 
value for pthread_stack_size.

This ends the first level of interrupt handling by the kernel. At this point, the kernel transfers 
control to the second level interrupt handler. This is the main interrupt handler routine of the 
interrupt controller. From this point, the handler for the interrupt controller invokes the user-
specified interrupt handlers for the various interrupting peripherals. 

In MicroBlaze processor kernels, if the system timer is connected through the interrupt 
controller, then the kernel invisibly handles the main timer interrupt (kernel tick), by registering 
itself as the handler for that interrupt.

Interrupt handlers can perform any kind of required interrupt handling action, including making 
system calls. However, the handlers must never invoke blocking system calls, or the entire 
kernel is blocked and the system comes to a suspended state. Use handlers wisely to do 
minimum processing upon interrupts.

Figure  5: Basic Interrupt Service in Xilkernel
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Xilkernel interrupts
needs at least a timer interrupt (xps_timer) 
more can be added with xps_intc  
(xps_gpio, xps_uartlite, xps_spi, ...) 
register, unregister, enable, disable, acknowledge



#include "xparameters.h"
#include "xmk.h"
#include <stdio.h>
#include <sys/intr.h>
#include "xgpio.h"

// The driver instance for GPIO Device
XGpio ButtonsInput;
// push buttons value
volatile u32 pbValue;

void* my_main(void) {
// xilkernel is started.
// set up interrupt handlers
setUpButtonsHandler();

  
// enable interrupts in Microblaze
microblaze_enable_interrupts();

// a simple loop 
// to check whether the interrupts work
{
u32 oldB = pbValue;
while(1) {

while(oldB == pbValue) { /* busy wait */ };
xil_printf("buttons pushed %d", pbValue);
oldB = pbValue;

}
return NULL; // never reached

}

An example with GPIO

int main(void) {
// initialize hardware
InitializeButtons();

// start xilkernel
xilkernel_start();

}

void InitializeButtons() {
// initialize GPIO structure
XGpio_Initialize(&ButtonsInput, XPAR_PUSH_BUTTONS_3BIT_DEVICE_ID);
// should ALWAYS check the return status!

 
//Set the direction for all signals to be inputs
XGpio_SetDataDirection(&ButtonsInput, 1, 0xFFFFFFFF);

  
// enable GPIO interrupts by bit
XGpio_InterruptEnable(&ButtonsInput, 0xFFFFFFFF);
// enable GPIO interrupts globally
XGpio_InterruptGlobalEnable(&ButtonsInput);

}

void setUpButtonsHandler() {
 // associate interrupt channel with handler in INTC
 register_int_handler(XPAR_XPS_INTC_0_PUSH_BUTTONS_3BIT_IP2INTC_IRPT_INTR,

buttonsHandler, &pbValue);
 // enable interrupt channel in INTC
 enable_interrupt(XPAR_XPS_INTC_0_PUSH_BUTTONS_3BIT_IP2INTC_IRPT_INTR);
}

void buttonsHandler(void *p) {
// read data from the GPIO
*(u32*)p = XGpio_DiscreteRead(&ButtonsInput, 1);
// clear interrupt in the GPIO
XGpio_InterruptClear(&ButtonsInput, 0xFFFFFFFF );
// ack interrupt to the INTC
acknowledge_interrupt(XPAR_XPS_INTC_0_PUSH_BUTTONS_
3BIT_IP2INTC_IRPT_INTR);

}



OS choices for Nexys4

standalone xilkernel freertos

concurrency - - +++ +++
cross-

development

(portability)

- ++ +++

memory footprint +++ - - -


