Software in
Embedded Systems

—DANSS; Lecture 4

Contents

» embedded software requirements

® support for developers, an overview
a. standalone applications
D. operating systems and kernels
C. Vvirtualization

d. drivers

Embedded sottware

= very simple ® Very complex
(e.g. temperature sensor: (€.g. mobile phone: multiple
polling, single processor, single processor, multi-threaded, powerful
thread, few lines of assembly operating systems, thousands of
code) lines of code, legacy libraries)

Large variation in complexity!

Embedded sottware
A/

= highly critical » mostly harmless
(e.g. fly-by-wire: hard real-time, (e.g. Gameboy: quality of
safety critical, redundant, selig/.ice orienteycﬁ qu; Iayceable
certification, offline modeling and : - T i |
i failure is annoying at most)

Large variation in requirements!

AN overview

Embedded systems usually must:

® Work with the environment
(monitor, process, control)

n keeP some sort of timing
deadlines, QoS, control quality)

= Lse limited resources,; meaning...
(power, processing, bandwidth, memory)

. have alow cost

(development, falbrication, maintenance,...)

A few requirements

Embedded software usually needs to:

1.

execute concurrent activities
(multiprogramming, resource sharing)

. handle various /0O at different levels

(devices, drivers, polling or interrupts)

. detect faults, fail gracefully (exceptions)
. support timing (RT, deadlines, priorities)

. be easy to develop, verity, manage (tools)

'S99 0
) Y Y YY)
N - OB i
T P P A A N AT

SR e

Y Y'Y Y'Y

8000000
00

N e

-

T Ty

0

= running pre
ara

other

= sep:
x can

1

Concurrency: Contexts

® executing (scheduling) tasks on one processor
A. multi-programming (events)
B. time sharing (timer)
C. cooperative multitasking (yield control)
D. real-time (fixed points)

= context switch

® context = state, registers (program counter,
stack pointer/frame), held resources, etc.

Status Resources

CPU
Stack

Code BEIE]
(Mem) (Mem)

i
CPU

I

Status Resources

CPU
Stack

Code BEIE
(Mem) (Mem)

Concurrency: Threads

 thread = smallest subset of SIEIE
resources needed for tleezle

Resources

iIndependent execution CPU
® many shared resources (|(\3/|Ode |\ralata —
(common code/data) em) (Mem)
; Sesese Status ﬁ
® fast context switch within a — Stack

Drocess

Concurrency: lTypes

A. single process single thread -
(very simple applications)

B. multi-process single thread -

C. single process multi-thread -
(Mmay already reside in memory)

D. multi-process multi-thread -
(desktop PC: Windows, Linux,...)

SPST

n usually d single infinite Ioop (static/no scheduling, as such)
® USE polling to handle 1/O (non-blocking operations)
® NO resource sharing

= primitive interrupt/exception handlers

Example:
the default () configuration for Microblaze systems in XPS

Pseudo-MPST

® Use several processors with SPST

® sharing and synchronization is possible, with some work
e common AXI bus = shared peripherals
e FSL can be used to exchange data
e mutexes, mailboxes, etc.

= primitive interrupt/exception handlers

Example: the dual Microblaze in EDAN15 labs

More than one thread

Cases B, C, D require support for:
e scheduling: priorities, queues, timers
* contexts: TCBs, create, save/restore

» data sharing/synchronization:
locks, shared memory, messages, buffers,...

e protection: memory spaces, access rights, reentrant code

e Interrupts/exceptions:
arithmetic, memory access, /O, timers, etc.

SPMT

= common In many embedded systems since the
applications are fixed, already loaded at boot time!

= file systems, if they exist, are used for data only
(images, audio, sensor samples), not programs

Example; in Xilinx EDK

Many Embedded OS

x| inux/Unix
x MicroBlaze OSL (Xilinx)
x Petal inux, uCLinux (MicroBlaze support)
x Android port (Xilinx ZGC702 board)

x RTOS (MicroBlaze support)

x FreeRTOS (replaces xilkernel)

x Nucleus OS, VxWorks - multicore
x SynthOS : synthesize your own RTOS (900b footprint)
x MbedOS (ARM)

http://xilinx.wikidot.com/microblaze-linux
http://www.petalogix.com/
http://www.uclinux.org/
http://www.freertos.org/
http://www.mentor.com/embedded-software/nucleus/
http://www.windriver.com/products/vxworks/
http://www.zeidman.biz/synthos.htm

Hw virtualization

Nypervisor (Viftual=machifngs momtor)

* apstracts away the phyS|Ca| platform offerlng a standard
virtual platform sssssssnanitstatatets

» allows multiple 0S’ s to run Concurrently on the same hardware

Virtual
virtual comm. structure
| Platform
Real

Platform

HwW virtualization

advantages:
e simplified development!

e OS developers develop for the abstract hypervisor
nardware, not for each specific platform

* Hw developers port the hypervisor (microvisor) once,
and get the benefit of having many OS running on it

* more robust systems!
drawback: performance penalty
Example:

http://www.ok-labs.com/

2. Handling I/O

To read and output data: essential in embedded systems!
= polling (usually single threaded apps):
1. test the peripheral for new data (non-blocking!)
2. handle the new data if it exists
3. move on to other peripherals or activities
4. go back to 1.
x nterrupts (multi-threaded apps):
1. write a specific function - handler (usually very short)
2. associate it with the desired peripheral (uses interrupts)
3. expect “normal code” to be interleaved with handler calls

/O types

A. memory mapped /O (bus I/O)

» |ocated within the normal memory address space
e accessed using regular memory read/writes
 usually offer both polled or interrupt based handling
o some may use DMA to transfer data (become bus masters)
example: gpio, timer on AX
B. special /0 (port 1/O)

* implemented in the processor by specific instructions/lines

example: FSL on MicroBlaze

MB Interrupts Hw

Peripheral Bus

A simplified generic interrupt cycle:
1. Peripheral asserts IRQ

2. GPU detects INT, clears flags .
Handles (also acknowledge IRQ to the peripheral - bus)

3. Peripheral de-asserts IRQ
INTC:prioaty-levels; heterogeneous 1RQ signals

Device Drivers

® software packages abstracting away certain hardware
= vary in complexity/functionality

A. low level:

e small code library

o allow for fine control (register level access)

s require extensive development from users

B. high level:

* large libraries (and memory footprint)

e ecasy to use API

Vlore Device Drivers

Sw (OS, app)
Must comply both Hw and Sw ends! logealdd diriver level 1
* Linux: special way of coding Physioe o level O
» Stadalone-Xilkernel/Microblaze: Hw Hw -

= NO Dig restrictions since there is no complex
OS on top, only your own application

= can be Included with your custom IP core
and distributed along with it for use in EDK

* specific directory structure

* |low level driver generated by the Create IP wizard

3. EXceptions

Undesired situations, from which the system can recover.

* math:
divide-by-zero, illegal operand, overflow, underflow,...

e pbus timeouts

* Mmemory:
llegal opcode, unaligned data,...

These may or may not be supported by the framework!

4, Timing

e scheduling, performance meters

@ lowest level: timers
e Hw: usually at least one for the system tick + some WDTs
o SW: many software timers

@ higher level: priorities
e none (round-robin), static (RM), dynamic (EDF)

@ even higher: deadlines, periods, QoS

o fully rely on the underlaying framework to handle timing

5. Tool Support

e System

e assemb

OUl

components (IPs, OS, libs, JVMs)

component creator (Hw & Sw)

der

ers/compilers (G, C++, Java)
emulators/simulators
download/configuration/monitoring

profilers/debuggers

systmr_spec

systmr_dev xps_ktimer 0 none peripheral_instance Spe

systmr_freq SO0 100000000 int

systmr_interval i0 10 int
config_pthread_support true true bool

max_pthreads i0 10 int

pthread_stack_size 1000 1000 int

config_pthread_mutex false false bool

max_pthread _mutex i0 10 int

max_pthread _mutex_waitq 7@ 10 '

static_pthread_table ((my_m...
config_sched true
config_time false
config_sema false
config_msaq false

false rep|aced by
fig_sh fal fal .
Engig:;u?malloc f:li: f:l:: Fl’eeRTOS 1N

config_elf _process
copyoutfiles false false 2 O 1 7 - 1

true
false
false

CIL|L|€]|€|<£

+
+
+
+
+
+
+
+

An example: Xilkernel

- QS &Library Settings

0S: xilkernel « | Yersion: 2.00.a v dikernel is a simple and lightweight kernel t

Xilkernel overview (l)

POSIX threads API

e pthread _create, join, yield, detach, Kill,...

e round-robin or priority scheduling
POSIX semaphores

e sem_init, destroy, wait, trywait, post,...
XSl/POSIX message queues

* msgget, msgctl, msgsnd, msgrcv
XSI/POSIX shared memory

e shmget, shmctl, shmat, shm_adt
POSIX mutex locks

e pthread_mutex_init, destroy, lock, unlock,...

Xilkernel overview (ll)

A. dynamic buffer memory management
 faster but less powerful than malloc/free
* pufcreate, bufdestroy, bufmalloc, buffree
B. software timers
* Xxget _clock_ticks, time, sleep
C. exceptions (imited)
* registered as faults

* faulting threads are Killed and the nature of the exception is
reported on the console (in verbose mode)

* custom handlers cannot be registered
D. memory protection (imited)
e automatic + user spec., code/data/io violations, TLB

more on Xilkernel

Initialization
x kernel entry point x1lkernel_start() in main.c

x gl user initialization must be done before
(set up hardware cores)

Thread safety

» many library and driver routines | (not reentrant,
e.g. printf, sprintf, malloc, free,..)

= solution: use locks/semaphores to ensure exclusion

Customization
x many parameters (max pthreads, semaphores, sched type)

® many modules may be individually included (saves memory)

Using Xilkernel with MB

a.

o}
2.

o}

d.

e.

f.
3.

g.

n.

with the XPS wizard
add an xps_timer

select to use interrupts for the timer and other peripherals
you will handle (this will add XpsS_1ntc core)

in SDK
add a new Xilinx application
select the x1 Lkernel (in stead of standalone) in the wizard
select the POSIX threads demo as a base
modify and add the pthreads program
the BSP in SDK
select BSP created by the wizard in the step above

configure its parameters (STDIN/OUT, timer and intc instance,
add modules, clock frequency, table of static threads)

Xilkernel interrupts

= needs at least a timer interrupt ()

®x more can be added with |
(xps_gpio, xps_uartlite, Xps_spi, ...)

x register, unregister, enable, disable, acknowledge

Executing process
gets interrupted

-Save complete context;
-Switch to kernel IRQ stack;

-Execute next level of}> Execute user level

interrupt handling.
-If rescheduling is required,
invoke the scheduler.
-Restore context of the
IE =1 currently selected process.

-

Resumed process

proceeds

interrupts if any

#include "xparameters.h"
#include "xmk.h"
#include <stdio.h>
#include <sys/intr.h>
#include "xgpio.h"

// The driver instance for GPIO Device
void InitializeButtons() {
// push buttons value
XGpio_Initialize(&ButtonsInput, XPAR_PUSH_BUTTONS_3BIT_DEVICE_ID);

// initialize hardware
InitializeButtons();

XGpio_SetDataDirection(&ButtonsInput, 1, OxFFFFFFFF);

// start xilkernel
XGpio_InterruptEnable(&ButtonsInput, OxFFFFFFFF);

XGpio_InterruptGlobalEnable(&ButtonsInput);

// xilkernel 1is started.
// set up interrupt handlers

// associate interrupt channel with handler in INTC
// enable interrupts in Mici

// enable interrupt channel in INTC
// a simple loop

// to check whether the interrupts work

_ void buttonsHandler(void *p) {
/* busy wait */

"buttons pushed %d" *(u32*)p = XGpio_DiscreteRead(&ButtonsInput, 1);

XGpio_InterruptClear(&ButtonsInput, OxFFFFFFFF);
// never reached

acknowledge_interrupt(XPAR_XPS_INTC_@_PUSH_BUTTONS_
3BIT_IP2INTC_IRPT_INTR);

OS choices for Nexys4

standalone | xilkernel | freertos
concurrency siste; +4+ + 44+
Cross-
development - ++ + 4+
(portability)
memory footprint +—++ - i

