
Real-Life Design Trade-Offs
(choices, optimizations, fine tuning)  

EDAN85: Lecture 3

Real-life restrictions

Limited type and amount of resources

Changing specifications

Limited knowledge

2

Limited Resources
Time

Tools:  
Build (compilers, synthesis, technology), Test, Debug,
Maintain

Target hardware support:  
Available IPs/chips, Fixed architecture

Target software support:  
OS, libraries, drivers, protocols,…

3

Challenges
1. Design using available components

Select the most suitable architecture

Adapt components Hw/Sw to the given/fixed parts

Allow some flexibility, configurability (shifting specs.)

2. Optimize
Do not use more (area, memory, …) than you need

Add Hw to speed up/simplify Sw (e.g. DMA ctrl)

3. Test & Debug

4

Hw/architecture design
guidelines
A. Start with a simple, working design

B. Expand gradually by adding tested IPs

C. Design custom IPs only when necessary

D. Communicating data is usually the bottleneck, not
computing: choose fast/many memories, buses

E. Improve/Optimize a working prototype

5

Memory Band-width:  
VGA frame buffer example

6

640 x 480
rrrbbbggg

60Hz

640 x 480 x 9 x 60 =
165.888 kb/s

… = 5.184kW/s =
5.2MW/s

100 MHz bus clock

Approx. 1 word each 19 cycles (read access!)

…on a Microblaze system

Memory Band-width:  
VGA frame buffer example (II)

LMB_BRAM:

Single read access: 1clock cycle/word → no problem
Avg. bus utilization due to ctrl = 5% (takes 1 of 20cc)

PLB_BRAM: (plb_bram_if_ctrl.pdf)

Single read: 6cc/w → OK?  
Avg. bus utilization due to VGA ctrl =30%

Burst reads: ~10cc/4x2w = 1.25cc/w → no problem
Avg. bus U = 7%

7

http://www.xilinx.com/support/documentation/ip_documentation/plb_bram_if_cntlr.pdf

Memory Band-width: 
VGA frame buffer example (III)

PLB_DDR (plb_ddr.pdf)

Single read: 14cc/2w → OK?, avg. U = 35%

Burst read: 16cc/2x2w ~4cc/w → OK, avg. U. = 25%

PLB_EMC (SRAM,Flash): 8-bit access

Single read: 10cc/B (40cc/w)→ Problem.  
Bus cannot cope: avg. U = 200%

Burst read, …etc.

8

Variable Band-width: 
VGA frame buffer example (IV)

Band-width demand changes at run-time:
High band-width may be too high for the chosen bus

Smoother bus utilization may be required

Solution: BUFFERING (and prefetch) !
9

640x480x9b
60Hz hsynch

Instant Demand:
9b/pc = 0.07 w/bc

1w/14bc

Instant Demand:
0w/bc

Pixel clock (pc) = 25MHz, Bus clock (bc) = 100MHz

Total pixels 800x525

Variable Band-width: 
VGA frame buffer example (V)

Challenge: Keep the buffer busy (filled with data)
Buffer size?

Easy way out: full frame - not always possible
Trial and error:  
start with a small buffer, increase it if the controller starves
Analysis:

1. Compute the avg. rate (19bc/w ~ 0.052w/bc)
2. Size = Longest_time_without_using_data x Rate  

 (last pixel to first pixel delay)  
vhdl: (525-480+1)x800x0.052 = 1914 words (~2kw)

10

Intermission:
A VGA buffer architecture

11

CPU

bus

VGA
ctrl Displaypixel buffer

Video
Memory

1. INT:
almost empty

3. push lines
in the buffer

(gather = many to
one address)

always:
pop pixel

DMA
ctrl

2. program:
fetch more lines

CPU changes
pixels in here

FIFO

Fine Tuning: 
VGA frame buffer example (VI)

Initial assumption:  
all bits in a word carry
information!

complex decoder and unpacking
method

12

32Bus transfer
9 9 9 5

4 9 9 9 1

8

Memory
organisation

…

Translate 8 to 9 bits:
1. conversion table
2. default bit

• No conversion required
• Decoder not so simple

8 8 8 8

9 9 9

Solutions:
A. Reduce bpp: 8 (4p/w)
B. Align & discard bits

! Required band-width
and buffer size change!

Other solutions (VGA fb) …
reduce the visible window (less data)
reduce the resolution (CGA, blocky)
dynamic image generation (not fb)

custom solution (eg: background, road, cave…)
sprites
“vector” graphics

a mix of the above

13

VGA: custom solutions -
a dynamically generated background

14

Line: stores start-end “road”

shifts “down” and

“grows” regularly

Horizon: generates new road “line”

Video memory:

an array of start-end pairs,

shifting regularly (speed)

Sky: Y dependent

color gradient

more: roadside posts, middle marks, …

VGA: sprites
multiple instances of the same image (memory)
runtime generation/memory access

15

sprite:star
active ?
x1<x<x2 ?
y1<y<y2 ?
sprite:ball

?
x1<x<x2 ?
y1<y<y2 ?

x,y

sprite stack

sprite:ball
active ?
x1<x<x2 ?
y1<y<y2 ?
sprite:ball
active ?
x1<x<x2 ?
y1<y<y2 ?

sprite
RAM

topmost
active
adjusted
pixel addr

display • initiate lookup for x + N, y

VGA:  
vector graphics

initially made for vector displays
based on primitives

lines, triangles, polygons
circles, curves

store minimal info
start-end points
center-radius…

16

Vector Graphics Challenges
• rasterization is needed on modern displays

See Bresenham: http://www.cs.columbia.edu/~sedwards/classes/2012/4840/lines.pdf,  
http://members.chello.at/easyfilter/bresenham.html

• a frame buffer is often assumed!
• computationally intensive…
• dynamic generation - interesting problem

17

http://www.cs.columbia.edu/~sedwards/classes/2012/4840/lines.pdf

IP Configuration
Trade-off area/power for performance:

Processor
A. Cache type/size
B. Floating point support
C. Pipeline depth (?)

Memory sizes
Interconnect type/width (buses)
Timing/wait states

18

Memory Size Issues
problem:  
the program does not fit in the available on-chip BRAM

19

FPGA

BRAM

Flash
(config.)

SRAM

SDRAM

DDR

non-volatile, slow, small volatile, fast, large

very fast, small

boot

board

Memory Size Issues
Many solutions:
A. compile with -Os, remove debug info.
B. put the stack and heap in off-chip memories

• need to use available SDRAM, SRAM/Flash, DDR
C. execute from non-volatile off-chip memory

• boot from BRAM, jump to an executable off-chip
• use caches to speed up

D. decompress exec. from SRAM/Flash to DDR at boot

20

Memory Size Issues: 
SRAM executable example
Steps:
1. Link the main application from SRAM_BASEADDR
2. mb-objcopy -O binary main_app.elf main_app.bin
3. Write/compile/link a bootloader from 0x0000

21

typedef int (*maintype)(int,char**);

maintype maincode = (maintype)SRAM_BASEADDR;
int main(int argn, char **argv) { return maincode(argn, argv); }

4. Add MDM debug periph., set mblaze DEBUG_ENABLE flag

5. Download configuration, connect in xmd: mbconnect mdm

6. xmd> dow -data main_app.bin SRAM_BASEADDR
7. Run or Download configuration again

once!

Or… flash both Hw and Sw:
https://reference.digilentinc.com/learn/programmable-logic/tutorials/htsspisf/start

https://reference.digilentinc.com/learn/programmable-logic/tutorials/htsspisf/start

Software fine tuning
To adjust code speed and size:
A. Algorithm selection (e.g. bubble vs. quick sort)

B. Compiler optimization options
C. Linking options

• segment splitting: distribute code, stack, heap,…
D. Driver/library choices

• low level, small footprint, reduced functionality vs.  
high level, large footprint, loads of functionality

22

Drivers - Hw/Sw interface:  
VGA frame buffer example (VII)
A. 8bpp (4p/w)

Easy to modify single pixels (Xio_Out8) by writing
single bytes

B. 9bpp (3p/w)
Single pixels: read, modify & write
Exact address/offset computation more complex

C. Packed 9bpp
Even harder to compute the offset/address, build
masks, access split pixels, etc.

23

Conclusions

• Trade-offs are very common  
(e.g. band-width vs. simplicity, Hw vs. Sw)

• Hardware, software, and interfaces:  
must be designed together!

• Knowledge about the available components is key

24

