
Building Whole Systems:  
an brief overview
EDAN85 Embedded Systems Design -
Continuation (Advanced) Course, Lecture 2

Lecture 2 Contents
Life-cycle models or the five steps to design
1. requirements definition
2. system specification
3. functional design
4. architectural design
5. prototyping

Typical Issues and Solutions

Working Tips

Life-cycle models
ways to divide the design and development
of a system into smaller steps/phases

specification

rough
design

detailed
design

implementation

review
and revise

Waterfall
complete a phase, then
move on
unrealistic (real-world
design is iterative)

Life-cycle models
ways to divide the design and development
of a system into smaller steps/phases

Waterfall
V Cycle

somewhat similar to
Waterfall
emphasis on testing

requirements

preliminary
design

detailed
design

decomposition

system
specification

code

unit
test

integration
test

performance
test

system
integration

system
testverification

&
validation

design

implementation

Life-cycle models
ways to divide the design and development
of a system into smaller steps/phases

Waterfall
V Cycle
Spiral

risk oriented view
start small, iterate

Determine
Objectives

Identify and
resolve risks

Cost

Evaluate
Alternatives

Develop
Deliverables

Release

Plan Next
Iteration

start

Life-cycle models
ways to divide the design and development
of a system into smaller steps/phases

Waterfall
V Cycle
Spiral
Rapid prototyping

sometimes identified with
“spiral”
the prototype should
never turn into the final
product

Requirements
analysis

Quick
Design

Implement
(Extend)

prototype
Deliver and

get Feedback
from customer

start

Five Steps
Successful Design is based on:

1. requirements definition

2. system design specification

3. functional design

4. architectural design

5. prototyping

1. Requirements

identify what to do and
how well, starting from
the customer

characterize the system
and its role in the
environment

Customer

Requirements
Definition

The Design
Process

2. Design Specification

Formalizes the requirements in a
precise, unambiguous language

A. system’s public interface (I/O)
from inside the system

B. how are the I/O requirements
met by internal functions

Customer

Requirements
Specification

The Design
Process

Engineers

Design
Specification

3. Functional Design
find appropriate internal functional architecture for the
system ☞ a functional model

Partition and decompose as necessary:

minimize coupling (module interdependency)…or
maximize cohesion

progressively refine into smaller manageable
modules (and interfaces)

4. Architectural Design
map functions to hardware

constraints:
geographical distribution
physical and user interfaces
legacy components and cost
system performance needs
timing and dependability needs
power consumption

Hardware

Hardware
or

Software

Software

Hardware
Design

Techniques

Software
Design

Techniques

?

5. Prototyping
bottom-up process: assemble parts, eliminate more
and more of the abstract functionality

purpose: understand/evaluate the system design

static analysis: 
coupling, cohesiveness, complexity

dynamic analysis:  
behavioral verification, performance, trade-offs

Typical  
System Design Issues

a mix of specifications at different levels of abstraction

neither Hw or Sw are fully functional

Sw needs a “Hw” for implementation

Partition
Hw

Sw
Done time

implement

unit test

integrate & test

Target platform development (wait for Hw):

Improved System
Development
Cross-platform development (after partitioning Hw/Sw):

decide Hw/Sw interface and write stubs
develop Sw on an available Hw + stubs
develop Hw in parallel (along with tests in Sw)
port stubs on Hw, integrate Sw and test again

Partition Done time

port, integrate & testHost Hw

Hw

Sw
decide

interface
write
stubs

Target Software
compile with
the target API

An Example
Spec: …read a pair of integers (x,y) on the serial and
display a pixel an the screen at (x,y)…

“read integer from serial” and “put pixel” are Hw/Sw interfaces

(Host) Software
…

PutPixel(ReadInt(), ReadInt())
…

Target Hw
developed in

parallel

Host Hw
desktop PC

Stubs (Interface)
int ReadInt() { scanf() }

void PutPixel(int,int) { printf() }

Target API
rewrite ReadInt and PutPixel

for the target!

Concluding Tips (I)

make an detailed initial specification: reduces confusion
and other problems later on

distribute the work in the team (Hw, Sw, Integration,
Testing, etc.): more work gets done in parallel

meet up/report/discuss your progress often (team, me):
know who needs and who can give help before is too
late

Concluding Tips (II)
start from a working system (Hw+Sw) and build around it: a
full re-design takes much more effort/time

testing is essential: bugs are hard to detect and fix later
use unit tests, simulate modules thoroughly
use debuggers, printouts, leds, etc. to make sure your
system works
write simple Sw tests for your Hw

if time is short, go around problems: patch dodgy Hw in Sw

