Building Whole Systems:

an brieft overview

—DANSS Embedded Systems Design -
Continuation (Advanced) Course, Lecture 2

| ecture 2 Contents

» | fe-cycle models or the five steps to design

1. reguirements definition
2. system specification
3. functional design

4. architectural design

5

. prototyping
» [ypical Issues and Solutions

® \Working Tips

L Ife-cycle models

x Wways to divide the design and development
of a system into smaller steps/phases

x Waterfall

® complete a phase, then
Move on

x unrealistic (real-world
design Is iterative)

|Ife-cycle medels

= ways to divide the design and development
of a system mto smaller steps/phases sttt

- Waterfall

% = VCycIe \

» somewhat similar to
- Watertall

®x emphasis on testing

| Ife-cycle models

x Ways to divide the design and development
of a system into smaller steps/phases

Determine oSt st x Waterfall
%ecﬂves —\re‘SO'/eg‘i =\ Cycle
R% 2 Evaluate = Sp| ral
oS // Alternatives . . |
\\ / ® ISk oriented view
i x start small, iterate
Develop
Fila” l;lext \ Deliverables
eration /

| Release

| Ife-cycle models

x Ways to divide the design and development
of a system into smaller steps/phases

|
|
Requwemlents Quick
analysis Design n
start 3
. Implement
Deliver ano (Extend)
get Feedback prototype

from customer

Waterfall

V Cycle

Spiral

Rapid prototyping

x sometimes identified with
“spiral”

x the prototype should
never turn into the final
product

Flve Steps

®x Successful Design is based on:
1. requirements definition
2. system design specification
3. functional design
4, architectural design

5. prototyping

1. Requirements

Customer
= dentify what to do and
how well, starting from
the customer Requirements
Definition
» characterize the system
and its role in the I
e

. ' The Design
nvironmen St

2. Design Specification

Customer

» Formalizes the requirements in a I
precise, unambiguous language Requirements
Specification

A. system’s public interface (1/0) I

from Inside the system .

Design
. Specification
B. how are the I/O requirements
The Design

met by internal functions

W Process

3. Functional Design

» find appropriate internal functional architecture for the
system @« a functional model

Partition and decompose as necessary:

®x minimize coupling (Module interdependency)...or
maximize cohesion

® progressively refine into smaller manageable
modules (and interfaces)

4, Architectural Design

= map functions to hardware
Hardware

, Hardware Design
constraints: Techniques

= geographical distribution
® physical and user interfaces
® |egacy components and cost

® system performance needs
= timing and dependability needs
= DOWEr consumption

Software
Design
Technigues

5. Prototyping

® pottom-up process: assemble parts, eliminate more
and more of the abstract functionality

x purpose: understand/evaluate the system design

» static analysis:
coupling, conesiveness, complexity

= dynamic analysis:
behavioral verification, performance, trade-offs

lypical
System Design Issues

® a mix of specifications at different levels of albstraction
» neither Hw or Sw are fully functional

x Sw needs a “Hw’” for implementation

Target platform development (wait for Hw):

implement Integrate & test

>

[N ’
4 v v v
") \)
4
14

unit test

time

Improved System
Development

Cross-platform development (after partitioning Hw/Sw):
® decide Hw/Sw interface and write stubs
® develop Sw on an available Hw + stubs
x develop Hw in parallel (along with tests in Sw)

® port stubs on Hw, integrate Sw and test again

Host Hw l . I ------------------ port, integrate & test

time

d‘eCIde 3 erte
interface stubs

o

ria

° el.,Jn e eos
ySJ_J Y YYY

Target Software

AN AN PPN

YT Y YN T T Y Y YS
N A e R N A

s

the targat

mpile with

Wl)
U\

'Y

’
4

...read a
Ixe

display a pi

= Spec

Concluding Tips (l)

x make an detailed initial specification: reduces confusion
and other problems later on

x distribute the work in the team (Hw, Sw, Integration,
esting, etc.): more work gets done in parallel

® meet up/report/discuss your progress often (team, me):
<NOW Who needs and who can give help before is too
ate

Concluding Tips (lI)

= start from a working system (Hw-+Sw) and build around it: a
full re-design takes much more effort/time

® testing is essential: bugs are hard to detect and fix later

= Use unit tests, simulate modules thoroughly

® (Se debuggers, printouts, leds, etc. to make sure your
system works

= Write simple Sw tests for your Hw

x |f time Is short, go around problems: patch dodgy Hw in Sw

