Eyetoy - EDA385 Project Report

Axel Ahlbeck - datllaah@student.lu.se

Ricardo Gémez - socl4rgo@student.lu.se

Daniel Lundell - adal0dlu@student.lu.se
Erik Nimmermark - fprO5eni@student.lu.se

Instructor: Flavius Gruian

October 2015

Abstract

In the early 2000’s, the EyeToy was released for the Playstation 2. It
was a game where the player would stand in front of a camera and be
visible on a monitor, and then different objects would show up on screen
for the player to hit or avoid.

The idea behind this project was to mimic the EyeToy game using an
FPGA-board and a camera. Because of the memory constraints, a lot of
computations would have to be done in hardware and ”on the fly” since
image processing generally is computation-heavy. Both the hardware and
the software needed to be constructed in such a way that memory usage
was optimal, too keep within the memory- and time constraints.

The final product is far from perfect. Problems with the camera proved
to be difficult to solve, resulting in an inferior picture quality and less
functionality than expected.

Contents

[1I__Introductionl

12 Hardware Description|

2.5 PO2030N| o

2.4.1 TImg Generation|.
2.5 Image Processing 0oL

[2.5.1 Background Extraction|

[3__Software Description|

3.1 Camera Register Values|

10
10
10
11

12

12

12

1 Introduction

The purpose of this project was to implement a clone of the popular EyeToy
game released for the Playstation 2 in the beginning of this millennium. The
game was unique because it used a camera with which to play, instead of a
controller. Standing in front of the monitor, the player could see him- or herself
on a monitor along with computer generated objects to either hit or avoid.
There are many games for the EyeToy, but in this project, only the simplest
possible game was to be developed - ” Avoid the wall”.

As the name suggests, the screen fills up with a ”wall” with a cutout (a hole
of some shape) for the player to fit into. If the player is able to squeeze into
that cutout when the time is up, he or she succeeds and moves on to the next
wall.

The final result differs quite a bit from the initial proposal, however in hardware
more so than in software. To fetch the camera feed, a lot more (and more com-
plex) hardware was needed. Initializing the camera had to be done in software,
and with that an I?C had to be added. Also, the image processing required
some extensive hardware (since it could not be done in software). Because of
the above mentioned, the final result is more hardware-focused than originally
planned.

2 Hardware Description

2.1 Architecture overview

An overview of the architecture can be seen in figure[I} The hardware consists of
the Microblaze CPU, VGA controller, Image generation, Image processing and
the PO2030N camera. The communication between the CPU and the PO2030N
is done via an AXI bus. The VGA controller and Image generation generates
the VGA signal to the monitor. The VGA controller is used for the timings
and Image generation outputs the data bits through a VGA connector. Image
processing is not integrated into the rest of the system it is therefore unconnected

in figure

CcPU Camera
bl Initialization

VGA
controller

_—
Image
—_—
generation

Image
processing

Figure 1: Architecture model

2.2 FPGA utilization

This is the utilization presented without any image processing present in the
architecture:

e 12% of Slice Registers
e 32% of Slice LUTs

This is only the CPU with camera initialization, VGA controller and Image gen-
eration. This would of course be much higher if the image processing algorithms
were in place.

2.3 PO2030N

The camera peripheral used in this project is PO2030N developed by PixelPlus.
It has many features, including a 1/4.5 inch 640 x 480 active pixel array with
color filter and micro-lens. It outputs 30 fps if clocked with 27MHz. The output
format is 8-bit YCbCr by default (used in this project).

The clock feed into the camera is the 25Mhz pixel clock routed via an output
DDR component(ODDR2)[I]. This is the only input to the camera except for
the SCL and SDA which are used for the I2C' communication. The hsync, vsync
and pixel clock outputs coming from the camera are not used. The image data
is output through eight data pins which are also connected to the system.

The output pixels are directly fed into the VGA (due to time constraints),
which results in an image that has the correct shapes of everything but the
colors are not pleasant to look at. The reason for this is that the VGA video

signal is specified to be RGB, so when YCbCr was output through the VGA
connector it resulted in faulty coloration of the image. To combat this, the Cb
and Cr values are simply ignored and the Y is sent to the R, G and B pins.
Instead of the very unpleasant picture, the monitor displays a black and white
picture where shapes and objects are much easier detected by the human eye.

2.4 VGA controller

The vga_ctrl block handles the feed and timing of the signals to the VGA
connector. It has a pixel clock input, as well as the data output from the
camera. For the timings a VGA controller [3] written by Ulrich Zoltdn from
digilent is used in conjunction with a custom-made image generation module to
provide synchronization, as well as the RGB signals for the VGA. It also has a
clock output that feeds a clock to the camera peripheral.

2.4.1 Img_Generation

Img_generation was originally only meant to check whether there is a wall or
not at the current position and allow either the camera data feed or a wall
pixel to the VGA connector. However, since the camera debugging took up
so much time it also contains some timers and logic used for debugging and
demonstration purposes.

2.5 Image Processing

In order to distinguish the player from other items or background different image
processing algorithms were implemented. First of all, the user (the player in
front of the camera) had to be extracted and separated from the background.
For this reason, an algorithm targeting background extraction was needed. In
the literature, different solutions are proposed. Among them, colour/brigthness
background extraction was chosen.

2.5.1 Background Extraction

Constraining the background (i.e. a wall) to be either darker or brighter than
the user enables simple background extraction by means of thresholding pixels
depending on its brightness value. Considering the background to be brighter
than the user (for example, if the wall is coloured white), comparing pixel by
pixel the image to a brightness value, and generating a logical 0 or 1 on the
output image depending on whether it is higher or lower than the threshold
value will ideally lead to the required result. This result will be a binary image
containing only 1s and Os where the pixels containing the user will have value 1
and the pixels containing background will contain 0 (or vice versa).

A simple on-the-fly memory-less architecture can be directly deduced from
the previous definition: pixels coming from the camera are processed in a com-
binational block that uses a comparator as decisor for background/foreground
separation and generates 1s or Os that form the output image.

2.5.2 Morphological post-processing

Whereas theoretically, the previous processing should be enough for proper
background extraction, real-life scenarios show that post-processing of the bi-
nary output is required. The input images were constrained to images were
the background was, for every pixel, brighter or darker than the foreground.
However, this condition doesn’t stand for real life images. Shot noise, or non-
idealities of the background and foreground sections of the image (dark corners
of the background, or bright clothes or parts of the body in the foreground)
lead to noise in the resulting thresholded image. In this section, an image will
be considered to be noisy if there are pixels that have binary values that differ
from the desired output (an ideal background extraction). This undesired noise
on the images can be solved by means of morphological processing operating
over the output binary image.

Usually, noise in thresholded images can be assumed to be smaller (in pixel
size) than the foreground images. This condition stands for most of the cases,
where the noise sources are dark corners, or shot noise from the sensor. Where
this condition stands, image processing algorithms called image erosion and
dilation (and its combinations called image opening and closing) can be used
to improve the quality of the output binary image. Detailed information about
the definition and usage of this algorithms can be found in [4].

On-the-fly image processing was one of the main difficulties on the hardware
implementation. As stated before, the lack of memory causes the necessity of
an algorithm which is able to process the pixels at the same rate as they come
from the camera. Hardware implementation was based on [5], written by Hugo
Hedberg, Fredrik Kristensen and Viktor Owall. However, small modifications
were done to the paper’s architecture, in order to be able to stop the whole
processing chain in presence of an intermittent data flow.

As presented in [4], combination of different image dilation and erosion blocks
leads to more complex processing blocks, which allows, for example, efficient
binary noise reduction. For this reason, a top block containing any on-the-fly
processing module and two FIFOs (one at the beginning and another one at
the end) was designed. The purpose of this standardization was enabling quick
modifications and concatenations of different processing stages. Figure [2] shows
the high-level architecture of the processing block.

Clock Dornain L Clock Domain 2 Clock Domain 3

Data (7:0) . ~ Data (7:0)
Data (7:0] Data (7:0) FIFO —
rd_en rd_en
_ ween | FIFO - Frame Processing Wr_en —_—
Empty Empty
System's Building Block |
AN

Figure 2: High-level architecture of the processing block.

2.5.3 Hardware Integration and verification

After the design and verification of the previous blocks when being isolated,
a real-life scenario was modelled and used for verification purposes. For this
reason, a Matlab script was generated. This Matlab script takes an input image
from the computer, and generates a text file with the pixel values row-wise,
as it would be in a real-life scenario using the provided camera. This text file
was used as stimuli for the hardware system, and as a result, another text file
containing the output image was generated. This image was then verified by
using a Matlab script that compares the simulated values with the expected
ones in the theoretical model.

3 Software Description

The software is quite simple in its design. It handles the initialization of the
camera settings. This is done by reading and writing to the registers in the
camera via an AXI I2C bus. The camera settings are mostly unchanged from
the default settings because most of them affect the camera timing signals, which
were not used.

3.1 Camera Register Values

All register values except the ones specified in table [T] has the default value as
stated in the "PO2030N Preliminary Data sheet”[2]. The only registers that
were changed was the framesize values. The frameheight was set to 800 and
framewidth was set to 525. This is the same values as the ones used in the
counters for horizontal and vertical synchronization in the VGA controller. The
”Value used” in Table[T]is the value of the register in question that was used in
this project.

Table 1: Non-default camera registers
Register address Default value Value used Description

04h 03h 03h Framewidth HI

05h 83h 20h Framewidth LO
06h 01h 02h Frameheight HI
07h F3h 0Dh Frameheight LO

3.2 Matlab Model

To effectively process the video stream, a Hardware system was implemented.
However, this system requires some parameters, i.e. the threshold value. The
impact of this parameters on the overall performance can be large. For this
reason, a careful study of this parameters in order to obtain the desired per-
formance is needed. However, studying this parameters directly on the final
system would lead to large time consumption. For this reason, a Matlab model
was implemented. This Matlab model uses commands and scripts from the Im-
age Processing Toolbox, such as imeerode and imdilate, to model the expected
behaviour of the system.

Input images were taken with the integrated camera of a laptop, and then
uploaded to Matlab to be processed. The parameters to be set are: Threshold
value, structuring elements’ size (for morphological operations) and structuring
elements’ shape. This parameters were simulated and obtained for the specific
size of the input image. However, when varying this size or the constraints of
the video input (i.e. the brightness of the background or foreground), this values
should be calculated again.

4 Installation and User Manual

4.1 Game description

Not playable, but the idea was to have the player stand in front of the camera
and try to fit into the "holes” on the screen. If the player at the end of the level
successfully managed to stand without touching the "wall”, the player would
pass that level. An example of a "wall” with the camera image in the ”hole”
can be seen in figure [3]

Figure 3: Example of a wall with camera feed in the "hole”.

4.2 Connect camera and FPGA board

Connect the camera module to the PMOD connectors labled JA1 and JBI.
Connect the Nexys3 FPGA board with two USB cables to a computer. Launch
the Digilent Adept software and browse for the download.bit file in the un-
compressed testcamnexys3\testapp\cpstreckrflaviusprojekt_hw_platform folder.
Press program to load the bit file into the FPGA.

5 Problems Encountered

Many different problems were encountered over the course of this project. The
biggest, however, was the problem with the camera.

5.1 Hardware

Apart from the camera issues the largest issue was the lack of memory on the
Nexys-3 board. Since it did not have enough memory to buffer the video images,
image erosion and dilation had to be implemented in hardware. This proved to
be very difficult and time consuming to debug.

5.1.1 Camera

Initially, the intention was to use a VmodCAM with the Nexys3-board. It was
soon discovered that the VmodCAM was not compatible with the board, and

10

would require an Atlys-board instead. When there was no Atlys-board avail-
able, the solution was to use a different camera - PO2030N. The PO2030N
was easily plugged into the Nexys3, but actually receiving the image was not
straight-forward.

From initial tests, it seemed that there were no signals coming from the camera
at all. Possibly, the signals were too weak to be detected or they were sim-
ply mapped wrong. To combat this, the design was reimplemented, the signals
remapped and the VGA controller introduced. The mysteriously missing data
signals as well as the SDA and SCL were now working correctly, but the hsync,
vsync and pixel clock outputs coming from the camera still had no usable sig-
nals. These signals are currently not mapped, and the hsync and vsync from
the VGA controller are used instead. Because of this there is a timing problem
where the horizontal- and vertical synchronization signals as well as the pixel
clock are not ”in phase” with the data output from the camera, which causes
errors in the video image as can be seen in figure

333333

3333333333330302 3
33333 £ 33333232
23233333333333333333332221

Figure 4: Distortions in the camera image.

5.2 Software

Software is only a small part of this project, but still not free from problems.
Initializing the camera in software meant that values to the camera registers had
to be sent over the AXI bus to the I?C and finally to the camera. The problem
proved to be a combination of the signals from the camera not coming through
properly and the libraries used in software not working in this particular design.

11

Instead of receiving a receiving the expected value from a register, the program
would receive a 0, or be stuck in an endless loop waiting for the response.
Eventually this was solved by using functions and addresses used in another
project provided by Flavius.

6 Lessons Learned

When dealing with a project of this magnitude, it is important that everyone
knows what changes has been made and what features has been added. For
this, Git or any other revision control tool is great. Unfortunately, such a tool
was not used for this project causing many changes to be lost.

Effectively dividing work is also important, and frequent meetups to discuss
progress and setbacks. Do not underestimate the size and difficulty of a project.
This project was almost a project of projects, in terms of how much had to be
built in the end.

Finally, be very careful when mapping pins and signals in the xps. A single
typo can cost a few days, just because of how hard errors can be to detect.

7 Contributions

e VGA-controller - Erik, Daniel

e Image generation - Erik

e Camera Initializing - Erik, Axel, Daniel

e Connecting Camera signals / routing - Erik, Axel, Daniel, Ricardo
e Matlab model - Ricardo

e Game logic - Erik, Axel

e Image processing - Ricardo

e I?C communication - Erik, Axel

e Report - Erik, Axel, Daniel

e Presentation - Axel, Daniel, Ricardo

8 References

[1] Spartan-6 FPGA SelectIO Resources. October 2015, http://www.xilinx.
com/support/documentation/user_guides/ug381.pdf
Fetched October 2015

[2] Preliminary Data sheet PO2030N 1/4.5 Inch VGA Single Chip CMOS IM-
AGE SENSOR, 2005-10-14

12

http://www.xilinx.com/support/documentation/user_guides/ug381.pdf
http://www.xilinx.com/support/documentation/user_guides/ug381.pdf

[3] Ulrich Zoltén, VGA controller 2006-09-18. http://ece.wpi.edu/~rjduck/
vga_controller_640_60.vhd

[4] Pierre Soille, “Morphological Image Analysis,” Springer Berling Heidelberg,
pp. 63-103, 2004.

[5] Hugo Hedberg, Fredrik Kristensen, and Viktor Owall, “Low-complexity bi-
nary morphology architectures with flat rectangular structure elements,”
IEEE Trans. Circuits Syst.—Part I: Reg. Papers, vol. 55, no. 8, pp.
2216-2225, Aug. 2008.

13

http://ece.wpi.edu/~rjduck/vga_controller_640_60.vhd
http://ece.wpi.edu/~rjduck/vga_controller_640_60.vhd

	Introduction
	Hardware Description
	Architecture overview
	FPGA utilization
	PO2030N
	VGA controller
	Img_Generation

	Image Processing
	Background Extraction
	Morphological post-processing
	Hardware Integration and verification

	Software Description
	Camera Register Values
	Matlab Model

	Installation and User Manual
	Game description
	Connect camera and FPGA board

	Problems Encountered
	Hardware
	Camera

	Software

	Lessons Learned
	Contributions
	References

