Design of Embedded Systems Advanced Course
Mario Breakout
Adam Dalentoft, dat11ada@student.lu.se

Simon Wallstrom, dati1swa@student.lu.se
Viktor Sannum, dat1lvsa@student.lu.se

November 4, 2015

Contents

1__Introduction| 2
2__Hardwarel 3
2.1 Graphics|. e 3
2.2 Controller] e 5
7
4__User Manuall 8
4.1 Installation| 8
4.2 Playing the game| L 8
b__Conclusion| 9
.1 Problems and possible solutions|. 9
b2 Lessons Learned| 10
5.3 Contribution Statementl 10

[A Eye Candy| 11

Abstract

When developing an embedded system there are a lot of important aspects to
consider. Not only are there numerous technical details which have to be considered
in order to end up with an as efficient and cost effective system as possible. Knowl-
edge in many sub fields in system development is required as well as a well working
development process. In our project we encountered numerous obstacles related to
many of these areas, from having to learn a new programming language and style
(VHDL) in a fluent fashion, to gain understanding of how many components have
to interact over a system bus and implementation specifics in the VGA standard.

However, in the end, the biggest issues were not technical but rather methodical,
we switched from a static waterfall-like method to a more dynamic one. For future
project more focus should be on how to divide work between developers more effec-
tively as well as what should be done when road block issues are encountered.

In the project, we chose to develop a classic arcade game and while the final
product was kind of what was described in the initial proposal, a lot of the other
implementation specific details have been changed in the end.

1 Introduction

This is the final report for the project in the Design of Embedded Systems Advanced
Course (EDA385). The goals of this report is to discuss and conclude the work done dur-
ing the project. This includes different hardware and software solutions and the interface
between them when implementing a Breakout style game. The project, as mentioned,
is a Breakout style video game where the player controls a paddle along the bottom of
the screen. The paddle is used to bounce a ball against a wall of bricks, with the goal
to clear the play field from bricks.

The sections Hardware and Software describe the implementations and design deci-
sions made in the project. Following, is a brief user manual that covers installation of
the software and controlling the game. Finally, the section Conclusions will conclude
the report, cover problems encountered and lessons learned.

Drivers for

} Vesyne
Game Logic Controller and .
GPU rendering interrupt handler
k. ¥
Microblaze CPU 32kB BRAM
AXI 4 Light Bus
W-sync
interrupt
e . pulse - .
Graphic Accelerator
VGA Controller Controller Encoder
Spartan §
Physical
WGA Cable 6 pin Pmod

r\\\\\\\ 52

WGA Monitor Pmaod Encoder

Figure 1: Architecture overview; blue components represents custom IPs, purple already
existing and yellow is custom software.

q

As can be seen in Figure [the architecture consists of two custom made VHDL

modules: one for the input controller and one for the VGA graphics output controller.
The hardware modules are communicating with a Microblaze processor, and is thus
accessible by the game logic, via an Azi4Lite bus. Which is one of the major deviations
in the final project from the project proposal. In the proposal FSL buses where used.
Another difference is that the controller is based on a rotary encoder instead of the on
board buttons, as mentioned as a possible improvement.

2 Hardware

The physical hardware base is a Nexys 3 Spartan 6 FPGA board[I]. This is configured
with a MicroBlaze processor[3]. The processor has access to 32kB of BRAM memory
and runs at a clock speed of 100MHz. The FPGA is also configured with a custom made
graphics controller and an user input controller. The custom controllers are communi-
cating with the software on the Microblaze over an AxijLite bus as well as interrupts.
The final system is estimated to use 0.173W which is almost the same as the dual core
setup used during the labs of the introduction course. The comparison with a dual
core setup continues to hold when looking at the utilization of the board with 15% of
Slice Registers used, 40% Slice LUTs and 66% Occupied Slices. It is interesting that
the custom made graphics core uses almost the same amount of hardware as an extra
Microblaze core would take.

The hardware architecture is created using Xilinx Platform Studio (XPS)[2]. With
this tool different hardware parts are connected to a MicroBlaze processor and synthe-
sized. XPS was also used to get information about the hardware utilization. To build,
simulate and test the VHDL code for custom made hardware, ISE Project Navigator
was used[6].

2.1 Graphics

The graphics controller is responsible for generating the VGA signal which is displayed
on the screen. It consists of several separate VHDL components, as follows:

The generated VGA signal is a standard 640x480 pixels 60 Hz signal which requires
a pixel clock at 25MHz. The component vga_clk_25 is responsible for taking a 100MHz
clock signal and generate a 25MHz signal out of that.

vga_controller grabs the 250MHz signal and generates the correct timings, synchro-
nization signals and blanking signals which are required for VGA output.

vga_src receives the two signals vCount and hCount from vga_controller which in-
dicates which pixel currently is to be rendered. wvga_src.vhd contains a number of hard
coded sprites and uses 32 memory mapped registers (currently only 23 are actually used)
to determine the color output for a given pixel. All graphics are logically draw in layers,

Sprites

WGEA_clk25
AXI4Life
ck25 ¢lk100 4 !
—hiSync—» [€—ball, pad x.,y size—
WVGEA_Controller [—hiCount—» VGEA_src [€—bricks
100MHz clock—» Blank—* le——score, etc.

Figure 2: VGA controller overview

if one layer determines a pixel to be transparent, the next layer is drawn etc. If all layers
are transparent, the background is drawn.

The layout of the components and signals in the graphics controller is illustrated in
Figure

The memory mapped registers have different responsibilities: The first 24 are repre-
senting the various blocks which make up the wall in the game. Each block is represented
by 4 bits (which would allow for up to 16 different types of block sprites), which means
that one register holds 8 blocks. The position of each block on the screen is implicitly
given by its position in the registers and the blocks are laid out in a 16*10 grid (which
means that only 20 registers are actually currently used). One register keeps the ball x
and y position (10 bits each), its size and x direction. Another register keeps the paddle
x position (10 bits) and size. A third register holds the score (4 bits per digit) and
amount of lives (not used). Refer to Figure [3| for a simplified overview of the memory
mapped register layout.

The memory mapped registers are auto generated using Xilinx EDK. This makes
them simple to integrate.

One noticeable detail with this implementation is that much of the functionality is
hard coded making the vga_src component quite inflexible. An earlier implementation
used a frame buffer (on external cellular memory), however this turned out to require
too much development time (more than a week and a half was spent developing this
while not generating good enough results) while also being deemed to be a too much
overkill solution. Yet still a lot of improvements, such as: cleaner code, removing unused
registers and code or implement the features that would use them could be made on the
current implementation.

00| 01| 02| 03| 04|05 |06 |07
og (08 |(0A|(OQB| OC| OD| OEl OF

1001112 13 1415 | 16| 1.7
18119 1A 1B| 1.C| 1.D] 1. E| 1.F
201 21 22| 23| 24| 25| 26| 27

28| 29| 2A| 2B| 2C| 2D 2. 2F

Bricks

Ballx Bally BallSize
PaddleX PaddleSize
Score Lives

g2

Figure 3: Memory mapped registers overview

2.2 Controller

In the beginning of the project the controller was implemented with the push buttons on
the Nexys 3 board. This implementation was very simple and and built on the xgpio api
available with the Microblaze core. The controller worked but the time plan allowed a
custom made one instead. In the 'possible improvements’ section in the project proposal
both PS2 controller and analog steering wheel was mentioned. The analog steering wheel
was chosen for the retro feeling.

The final controller is based on a Pmod Rotary Encoder from Diligent [7], described
in Figure 4] The encoder is connected to the first row (6 pins) of the first Pmod connec-
tion on the Nexys board. Four of these pins are used in the WHDL module that handles
the controller and the other two are for power. Two of the four outputs, A and B, are
used to decode if the rotary shaft is rotated to the left or to the right. The other two
are BTN, a push button, and SWT, a switch. In Figure [5| a timing diagram of a right
rotation of the shaft is shown.

Figure 4: Diligent Pmod Rotary Encoder, used as controller for the paddle [7].

Switc:h Chatter
Rotate nght l

ﬂmﬂ\vjm N

Fising edge of A first, then B
is decoded as a rotate right

Detent

Figure 5: Timing diagram for the Rotary Encoder, this diagram shows the output to A
and B when the rotary shaft is rotated to the right [§].

The VHDL module that handles the input from the rotary encoder is based on an
example implementation provided by Diligent [7]. The provided Debouncer module is
used to get rid of noise on the output ports. The module writes a position variable be-

tween 0 and 31 to a memory mapped AxifLite register as well as the button and switch
values.

This pcore was integrated in the XPS project and connected to the Axi bus and the
external ports previously mentioned. The auto-generated .h-file for Axi communication

is slightly modified to provide a get_position() function. This is the way the rotary
encoder is integrated in the software.

3 Software

The Eclipse based Xilinx Software Development Kit 14.2 (XSDK) is used for for soft-
ware development and compilation[4]. Adept 2.4 by Digilent is used to load the compiled
software to the Nexys 3 board[5].

The software used in the project are mainly game logic and communication with the
hardware. All the software is written in C, both the finished version and the simulations
and tests. To avoid problem with memory allocation and memory leakage, dynamic
memory allocation is completely avoided. Hence no libraries are needed to be included
which is relevant as the system got limited memory. Dynamic memory is also a problem
in an embedded system, especially this one, as it got no operating system or garbage
collection to control the memory.

The code was developed in several iterations and got simulations to check func-
tionality before the final hardware is done. To do these simulations, the C and C++
compatible graphics library SDL 2.0 is used [9]. This library is rather advanced in the
sense that whole games can be made by it. However, it also got the functions to make
rectangles and basic keyboard recognition. Thereby the simulation is just the most basic
version of the program, just to see that the functionality of the game logic is correct.

The complete code which runs on the board is separated in several files in order to
achieve some sort of structure. The main game logic is located in the file breakout.c.
This file contains initiation of variables, render function, update game and collision de-
tection. The collision detection works from a ball point of view. That is, the ball is
constantly checked if it is about to hit another object (brick, wall or paddle). This so-
lution deals with the problem of the ball going through the bricks and thereby making
strange bounces of the brick. Each time the display is updated the collision detection is
called to determine the preferable action for the ball.

The file vga_renderer.c contains all the communication with the vga-controller. That
is, draw ball, bricks, pad and score board to the screen. This is done by directly setting
coordinates from the software to the registers in the hardware. However, the software
values do not correspond directly to the register value describing the correct position on
the screen. Therefore the values need to be shifted to fit the register vectors. There is
support for several sprites both in software and in hardware. From the write functions
it is possible to specify which sprite is to be written to a specific position on the screen.
Each sprite got a corresponding value in hardware which make the sprite handling al-
most entirely hardware based.

The file main.c deals with the main loop and the interrupt handling of the program.
The main function register an interrupt handler to react on signals from the hardware.
When the processor receive an interrupt on the (vSync) signal this handler is triggered.

This in turn calls the game update function which updates the internal state model and
renders any changes on screen. Any calls to hardware is contained in the driver file
vga_renderer.c.

The memory requirement for the software is low, at around 6 kB. The system has
32 kB of memory at its disposal and there is plenty of memory left for variables which
are not allocated until runtime. All graphics are drawn directly by the custom made
vga-controller, which makes the memory clear of large sized graphics.

To make the mapping between software and hardware possible several auto generated
files are used. These files mainly contain constants that map to registers in hardware
to make it easier to communicate. There are also files with initiation functions for the
platform, namely knob.h and platform.h.

4 User Manual

This section cover the installation and instructions on playing the game.

4.1 Installation

Shipped with this report is both a .bit file ready to be loaded on an Nexys 3 board and
a package with XPS and XSDK projects with the implementation of the hard- and soft-
ware. The XPS project holds a folder named pcores, where the VHDL implementation
of the GPU and controller is saved. The XSDK workspace is named ws and holds the C
code for the game and interfaces. To prepare the board for the game, a Pmod Rotary
Encoder needs to be connected to the top row of the first Pmod connection (JA1) and
the VGA port needs to be connected to a compatible monitor.

4.2 Playing the game

The controls are simple, to steer the paddle left and right rotate the rotary encoder.
Push down the rotary encoder to release the ball and start the game. The player can at
any time pause the game with the switch on the rotary encoder.

The game starts with a demo level. The first game level loads when the rotary en-
coder is pushed down. On each level the player is able to place the paddle anywhere
on the screen before starting. When all bricks on the screen are gone, the next level is
loaded. The coins only give extra points and do not need to be cleared.

The player has five lives, thus the game ends and restarts when all lives are lost.
There are four levels that are looped until the player dies. As a special feature, the
player can activate a bot that plays automatically on switch eight on the board.

5 Conclusion

This section contains problems encountered and lessons learned working on the project.
This also include solutions and other thoughts about the work during the process.

5.1 Problems and possible solutions

As the project is rather free in terms of design choices and ways to do things, the only
limit is the hardware. It is easy to get stuck on a path if it seems to be the right one.
In this case, the software was built differently from the beginning. It had a collision
detection build on comparing the balls coordinates with the coordinates of all the blocks
every rendering cycle. This solution was not only computation heavy but also had a
rather difficult bug. When the ball came towards the bricks in a specific angle it some-
times went straight through the brick instead of bouncing off it. Many hours were put
to just try to solve this problems as the rest of the collision detection was working fine.
However, this bug was never solved and the collision detection was instead changed to
the one described in the software section. Thereby the bug was avoided and the collision
detection also got better in terms of computation heaviness. In this case much time was
put on trying to solve the first bug and it was not solved until another member of the
group (Viktor) read through the code and came up with the new idea. Therefore it is
important to not get too stuck on one track but try to discuss the problem with someone
else and find a new path to success.

Similarly, a lot of work was put into developing the first iteration of the graphics
controller and working with the on board memory chip. In the end these ideas were
scrapped when it was realized that there was a great risk that it would not be finished in
time. Instead a rather ’hacky’ approach was used and a working graphics controller was
built in roughly one or two days, and refined as more time progressed. Not only was a lot
of work wasted but it had also limited the work the other team members could do, since
they were getting more and more dependent on working graphics. The most valuable
lesson learned from this is not to have a grand ambitious plan from the start but rather
start small with something which at least is working and work the way up from there.
Ideally the "hacky’ approach should have been tried first, changing to the cleaner one if
it was seen as a nice or necessary improvement and if time would have allowed for it.
One can kind of see a similarity to the Waterfall vs. Agile development techniques in this.

Testing is very important when it comes to system development. In terms of the soft-
ware, as previously mentioned, a simulation was made to make sure the software works
before it is put together with the rest of the system. This made the development much
easier, since one could completely exclude software bugs when putting the whole system
together. The other parts of the system got their own tests as well. Hardware uses test
benches in VHDL and the controller part uses basic software to check the output.

Because of the well-tested parts of the system, the completion of it and a running

version is easy to put together. Therefore more time can be put into fixing and polishing
the product than into finding and fixing bugs that could have been found in a much
earlier stage of the project.

When first testing the rotary encoder as controller for the game, a big problem was
noise and stability on the input A and B. This was quickly solved by modifying and
using a part of Diligents example code, the Debouncer. This is acting as a low pass filter
on the ports from the encoder.

5.2 Lessons Learned

As previously mentioned both the software (collision detection) and the hardware (GPU)
changed during the project, but, before the new implementations, both parts were stuck
for a while. The lesson learned from this is to not be afraid to throw away an implemen-
tation and start over with more knowledge from the failed attempt. The road to success
usually goes through a couple of iterations of non-optimal ideas before the optimal so-
lution is found.

Another lesson learned is that it takes time to compile the hardware, which can lead
to a lot of wasted time. As the project went on the group members learned to use this
time to do other useful things, such as work on the presentation, report or some other
part of the system. Coffee breaks ware also scheduled around hardware compilation.
The lesson also included planning of the implementation before compiling and not com-
pile for a crash-and-burn test, as sometimes done in smaller software systems.

Something that would be done differently if the project started today is the initial
planning and time estimation. As it turned out the GPU took a lot more time than
expected. It would have been better to let two people work on it to get a working GPU
in to the system earlier and then be able to work on improvements if needed.

5.3 Contribution Statement
Contribution by group member:
Simon implemented VHDL module for the controller, interfaced it in the software

and tested AXI4Lite communication. Wrote the controller section in this report as well
as the intro, the user manual and hopefully something more...!

Adam wrote game logic and simulation in C. Refactored the code and tested the full
system together with Viktor. Wrote the sections in the report connected to software,

that is the software section and parts of the conclusion.

Viktor was responsible for designing the graphics controller, writing it in VHDL,
Simon helped with the integration and AXI parts. He also wrote the section concerning

10

graphics.

References

1]

Diligent store site for 'Nexys 3 Spartan 6° FPGA board.
http://www.digilentinc.com/Products/Detail.cfm?
NavPath=2, 400, 897&Prod=NEXYS3&CFID=18681702&CFTOKEN=
933d14222352826d-2F6836B0-5056-0201-02E1D9AB2D87993A
(15/10-15)

Xilinx, Xilinx Platform Studio
http://www.xilinx.com/tools/xps.htm
(19/10-15)

Xilinx support documentation, MicroBlaze
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.
pdf

(19/10-15)

Xilinx, Xilinx Software Development Kit
http://www.xilinx.com/tools/sdk.htm
(24/5-15) Adept by

Digilent inc.
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828%Prod=
ADEPT2

(19/10-15)

Xilinx, ISE Project Navigator
http://www.xilinx.com/tools/projnav.htm

(19/10-15)

Diligent store site for 'PmodENC - Rotary encoder’, this page contains schematics,
reference manual and examples available for download. http://digilentinc.com/
Products/Detail.cfm?NavPath=2,401,479&Prod=PMOD-ENC (28/9-15)

Diligents reference manual for 'PmodENC - Rotary encoder’. http://digilentinc.
com/Data/Products/PMOD-ENC/PmodENC_rm.pdf| (28/9-15)

Graphics library for the software simulation
https://www.libsdl.org/
(13/10-15)

A Eye Candy

11

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,897&Prod=NEXYS3&CFID=18681702&CFTOKEN=933d14222352826d-2F6836B0-5056-0201-02E1D9AB2D87993A
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,897&Prod=NEXYS3&CFID=18681702&CFTOKEN=933d14222352826d-2F6836B0-5056-0201-02E1D9AB2D87993A
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,897&Prod=NEXYS3&CFID=18681702&CFTOKEN=933d14222352826d-2F6836B0-5056-0201-02E1D9AB2D87993A
http://www.xilinx.com/tools/xps.htm
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/tools/sdk.htm
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2
http://www.xilinx.com/tools/projnav.htm
http://digilentinc.com/Products/Detail.cfm?NavPath=2,401,479&Prod=PMOD-ENC
http://digilentinc.com/Products/Detail.cfm?NavPath=2,401,479&Prod=PMOD-ENC
http://digilentinc.com/Data/Products/PMOD-ENC/PmodENC_rm.pdf
http://digilentinc.com/Data/Products/PMOD-ENC/PmodENC_rm.pdf
https://www.libsdl.org/

003912

DO ND0
SRR R R URURUN

DU

PR)R R
D0

Figure 6: First level.

Figure 7: First level.

12

‘l—;
uza
L3
D o
e
O
]
=X

A

Figure 8: Board with controller.

13

	Introduction
	Hardware
	Graphics
	Controller

	Software
	User Manual
	Installation
	Playing the game

	Conclusion
	Problems and possible solutions
	Lessons Learned
	Contribution Statement

	Eye Candy

