
Real Time Spectrogram

EDA385 Final Report

Erik Karlsson, dt08ek2@student.lth.se

David Winér, ael09dwi@student.lu.se

Mattias Olsson, ael09mol@student.lu.se

October 31, 2013

Abstract

Our project is about visualizing sound using an FPGA board, a monitor and
an A/D converter to read the source. The visualization is a spectrogram,
a graph showing frequency and intensity over time. To get a signal from
the time domain to the frequency domain we use a Fast Fourier Transform
algorithm. In the end we learned that writing our own components was not
as easy as we thought and it saves a lot of work to adjust your architecture
to use premade IP cores instead.

Contents

1 Introduction 2

2 Architecture 3
2.1 Hardware . 3

AD Converter . 3
Fast Fourier Transform . 4
VGA Module . 4

2.2 Software . 5

3 User Manual 6

4 Problems 7
A/D Converter . 7
Fast Fourier Transform . 7
VGA Module . 7

5 Lessons Learned 7

6 Contributions 8

7 Final Result 8

8 References 9

1

1 Introduction

The project is about visualizing sound on a monitor through the use of a
Nexys 3 spartan 6 FPGA. There is an analog signal as input that is converted
with the AD-Converter, this signal is then processed with the FFT algorithm.
Our initial thoughts were to write most of the components from scratch (see
[Figure 1]), since we thought this would save area on the FPGA. This was
however a mistake as it took a long time to write and debug the hardware.
Instead we looked at which IP cores were available to us and decided to
change architecture as to use those IP cores. We wrote a custom VGA and
memory controller, and we wrote a wrapper to convert the FFT core for use
with FSL instead of AXI4-Stream. The AXI_IIC was instantiated through
XPS (see [Figure 2]).

Figure 1: Proposed architecture

Figure 2: Final architecture

2

2 Architecture

2.1 Hardware

Below you will see a table outlining the utilization of our hardware. The
percentages are of the entire project, not of the FPGA capability.

Slices Slice Registers BRAMs
Component Count Percentage Count Percentage Count Percentage
VGA 64 2.7% 65 1.6% 8 25.8%
ADC 262 10.2% 338 8.3% 0 0%
FFT 616 25.6% 2147 52.3% 7 22.6%
Microblaze 903 37.5% 1010 24.6% 16 51.6%
Other components 565 24% 544 13.2% 0 0%
Total 2410 4104 31

AD Converter

Figure 3: AD converter schematic

The signal input consists of an audio source connected to a PMOD AD2
from Digilent with some external circuitry. The PMOD contains a AD7991
12-bit A/D converter which communicates over an I2C interface. The I2C
interface requires external pullups to communicate at a high enough rate
since the internal pullups are to weak for the short rise time required for a
sample rate of approximately 40kHz. The input signal needs to be modi�ed
to �t the converter's input range, this is done with a simple circuit that adds
a DC o�set to the signal without a�ecting the audio source ([Figure 3]).

The A/D converter is con�gured to convert from channel 0 and use sup-
ply voltage as reference, all other parameters are kept at their default values.

3

When the converter receives a read request over the i2c bus, it responds with
2 bytes of information. The �rst byte starts with 2 zeros, 2 channel identi�er
bits and the 4 most signi�cant bits of the conversion result, the second byte
contains the remaining bits of the conversion result.

Conversion value register
Byte 1: 0 0 CH0 CH1 D11 D10 D9 D8
Byte 2: D7 D6 D5 D4 D3 D2 D1 D0

Fast Fourier Transform

The Fast Fourier Transform algorithm is generated with Xilinx Core Gener-
ator tool. It has a 32 bit input signal and a 32 bit output signal, 16 bits for
the real value and 16 bits for the imaginary value. The phase factor (a factor
that's multiplied in every step of the FFT) is 16 bits so that should need an
output length of 48 bits, this is avoided by using the scaling option to scale
the numbers down.

The FFT generated by Xilinx Core Generator uses the Axi4-Stream pro-
tocol to communicate. The MicroBlaze processor supports the AXI4-Stream
protocol as well as the FSL protocol, but it can only use one of them, so
either everything is AXI4-stream or everything is FSL. This causes an in-
compatability with the other cores in our project, because they are using the
FSL protocol. To solve this incompatibility we have written a wrapper for
the core that converts the protocol from Axi4-Stream to FSL. In addition to
the conversion we also cut the output signal in half, since one of the proper-
ties of a Fourier Transform is that it is symmetrical around the middle point.
The FFT we use have 256 points, but only outputs the 128 �rst of the result
to save a little bit of time while fetching the data.

VGA Module

The VGA module contains a VGA controller, some BRAM for video memory
and a Finite State Machine for the memory interface.

The VGA controller generates the timing signals and counters for the
current screen position.

Simpli�ed, the FSM has three states; Draw_Pixels, Read_FSL, and IDLE.

Draw_Pixels is the state that is responsible for putting and holding the
correct pixel color on the RGB port of the VGA. Outside of this state the
RGB port is set to a constant 0, meaning black color. This state is exited

4

when we are outside of our visible resolution, from this state we go to the
Read_FSL-state.

Read_FSL is where a new column of pixels is read. Because the FSL bus
is 32 bits wide, but the memory is only 8 bits, we need to do this in 4 clock
cycles, and increment the memory address between each of those cycles. To
avoid unnecessary data movement the memory is made cyclic, and a signal
is kept to keep track of where in the memory the �rst column is. We place
the new column that we read to the left of the previously newest column,
and then we decrease the signal to indicate the new �rst column.

From this state we jump to the IDLE -state as soon as we are done reading
from the FSL-bus.

IDLE is the starting state. It is also used as a wait-state between READ_FSL
and Draw_Pixels. From this state we jump to Draw_Pixels when the VGA-
controller indicates that it is the start of a new screen.

Figure 4: VGA module FSM

2.2 Software

Our software runs on the Microblaze CPU as a standalone process, meaning
we do not have any threads or interrupts. The software starts by initializing
the AD-converter to tell it which channel to use. After that it goes in to
the main loop as illustrated in [Figure 5]. The loop reads values from the
AD-converter, sends those values through the FFT core via FSL and �nally
sends the result to the VGA module. The VGA module only reads 128 pixel
values every time it is done drawing on the screen, so the waiting time in the
software will be waiting for the FSL queue to empty so that it can transfer
the new results.

5

Figure 5: Software �owchart

3 User Manual

1. Connect A/D Converter with pull-ups and DC-centering: This compo-
nent is described earlier in this report.

2. Connect monitor: connect a VGA cable from the FPGA VGA port to
the monitor.

3. Connect the programming and power cable to the Nexys 3 board

4. Turn on the power to the board

5. Open Digilent Adept and �nd the �le download.bit included in our
project

6

6. Press program in the Adept interface

4 Problems

A/D Converter

It took us some time to get the hardware for the A/D converter to work.
As mentioned previously some pullups needed to be soldered on to the IIC
bus to get it to work at a high enough rate. In addition to this the PMOD
AD2 converter only works on positive voltages, but the line-in source delivers
voltages centered around the zero point. This was solved by soldering a DC
o�set on to the circuit before the A/D converter.

Fast Fourier Transform

At �rst we intended to implement our own FFT algorithm since we could
not �nd any other way. This was very tedious work and in the end it took
up almost all of the space of the FPGA board, the best we could get working
was a 32 point FFT. Later on though we found that Xilinx Core Generator
could generate an FFT core for us, and this worked very well.

VGA Module

The initial plan was to write the memory controller from scratch and use the
RAM memory, we soon found that this approach was too slow for us. To
solve this we �rst tried to enable burst mode of the memory, but the problem
still remained. After that we tried enabling page mode [2], this made the
data stream not constant so a bu�er was introduced. This solved the timing
problem but instead our VHDL hardware became too big to �t in the FPGA.

The solution was to use the BRAM instead of the RAM. The BRAM
is smaller and faster, which means our timing problem was solved, unfortu-
nately it also meant that we could not print on the full resolution of the VGA
screen as we �rst intended.

5 Lessons Learned

This project has taught us a lot of things, for example the Xilinx toolchain
and e�cient work�ow with it. We have learned how to build an entire project
with both hardware and software and how to connect them together. De-
veloping hardware is a much �slower� process than developing software, it is
hard to debug and having a good test bench is very important. If the whole

7

project is compiled and a bug shows up it's hard to know where it came from,
so proper testing should be done on small pieces �rst.

6 Contributions

Most things AD-related is done by David, this includes constructing the
hardware and writing the software to communicate with it.

The early, self implemented, as well as the �nal wrapped Fast Fourier
Transformis written by Erik.

The early version of the VGA Module with built in DMA (which was
working in simulation but not tested or used) was written by Mattias.

And this �nal report is written by the group members equally.

7 Final Result

The sample rate is determined by the communication frequency of the I2C
bus, which is set to 800kHz, this should give a sample rate of 44.44 kHz but
this is not veri�ed, the system detects 20kHz input signals indicating that
it is atleast 40kHz. If the external pullups are too weak for the speci�ed
communication frequency it could lead to a lower sampling rate.

The target sample rate of 44.1 kHz would contain 735 sample points for
every frame. The A/D converter only reads 256 samples, of the 735 avaliable,
which means it might miss some information. This could be improved by
using a larger FFT or repeating the process multiple times per frame, but it
did not seem to be a problem.

The sampling process starts when the �fo bu�er of the last iteration is
emptied, which happens when the VGA module has �nished drawing a frame.
The result is then put in the �fo bu�er and the VGA module puts it into the
bram when it is done with the current frame. The time requiered for this
process is the time to position the VGA to begin drawing a new frame and
draw a complete frame, which in our case is 25.3 ms.

See a picture of the �nal result in [Figure 6], unfortunately it is rather
blurry because our camera is not fast enough to capture the moving image.

8

Figure 6: Final result

8 References

1. Digilent, Nexys3 Board Reference Manual, http://www.digilentinc.
com/Data/Products/NEXYS3/Nexys3_rm.pdf

2. CellularRamMemory, https://www.micron.com/~/media/Documents/
Products/Data%20Sheet/DRAM/Mobile%20DRAM/PSRAM/16mb_burst_cr1_

0_p23z.pdf

9

http://www.digilentinc.com/Data/Products/NEXYS3/Nexys3_rm.pdf
http://www.digilentinc.com/Data/Products/NEXYS3/Nexys3_rm.pdf
https://www.micron.com/~/media/Documents/Products/Data%20Sheet/DRAM/Mobile%20DRAM/PSRAM/16mb_burst_cr1_0_p23z.pdf
https://www.micron.com/~/media/Documents/Products/Data%20Sheet/DRAM/Mobile%20DRAM/PSRAM/16mb_burst_cr1_0_p23z.pdf
https://www.micron.com/~/media/Documents/Products/Data%20Sheet/DRAM/Mobile%20DRAM/PSRAM/16mb_burst_cr1_0_p23z.pdf

	Introduction
	Architecture
	Hardware
	AD Converter
	Fast Fourier Transform
	VGA Module

	Software

	User Manual
	Problems
	A/D Converter
	Fast Fourier Transform
	VGA Module

	Lessons Learned
	Contributions
	Final Result
	References

