
Camera Controller

Project Report - EDA385

Einar Vading, ael09eva

Alexander Nässlander, ada09ana

Carl Cristian Arlock, ada07car

November 1, 2013

Abstract

This report is on an implementation of camera control hardware with

movement detecting capabilities. It describes the process in all steps from

design to �nished product. Included are thoughts and comments on chal-

lenges, solutions and ideas for future improvement. The system is built

around a camera bought on ebay and a Nexys-3 platform from Digilen-

t. The end result did not live up to the initial expectations because of

unforeseen challenges but a working prototype was delivered.

2

Contents

1 Introdution 4

2 Implementation 4

2.1 Camera . 4
2.1.1 Camera Setup . 4
2.1.2 Camera Interface . 6
2.1.3 Camera Connection . 7

2.2 Memory . 7
2.3 VGA Interface . 8
2.4 Movement Detector . 10

3 Challenges 12

3.1 Cellular RAM too slow . 12
3.2 BRAM too small . 12
3.3 SCCB speci�cation . 12
3.4 Illegal default values . 13
3.5 Pixel clock on non clock port . 13
3.6 DSP causing trouble . 14
3.7 Hard to prototype in software on the board 14

4 Lessons Learned 14

4.1 Do calculations beforehand . 14
4.2 Implement in small steps . 15
4.3 Datasheets does not always have the answer 15

5 User Manual 15

6 Contributions 15

6.1 Einar Vading . 15
6.2 Alexander Nässlander . 16
6.3 Carl Cristian Arlock . 16

3

1 Introdution

In this project a camera surveillance system with motion detection was develope-
d. The implementation was based around a small camera module using on the
OmniVision 7670 CMOS VGA CameraChipTM, hereby referred to as OV7670,
together with a Xilinx Spartan-6 equipped Nexys-3 board from Digilent. While
the initial goal of motion tracking was not achieved, we managed to successfully
implement movement detection using a simple hysteresis based algorithm. The
reason for not implementing the full motion tracking was mainly time shortage
as a result of the camera con�guration taking way more time than initially es-
timated. Both the camera and the VGA had timing constraints that could not
be met using software so the entire project was implemented in hardware, syn-
thesized on the FPGA. The initial idea was to do motion tracking in software
and then accelerate it using hardware components but as time ran out it was
decided that it was simpler to just do detection in hardware rather than adding
a Microblaze core to the system. A simple overview of the system is shown in
�gure 1 and an overview of the implemented hardware components is shown in
�gure 2. All the components but the �nal VGA controller were written by us.1

2 Implementation

The basic parts of the implementation were identi�ed as

• Camera interface

• VGA interface

• Memory

• Detection system

Each of these parts needs interconnectivity for communication and data
transfer. A full system schematic can be seen in �gure 3. Hardware utilization
on the FPGA can be found in table 1. The list has been trimmed down to �t
in the report, omitting all zeroed statistics.

2.1 Camera

2.1.1 Camera Setup

The setup of the cameras many options is done over SCCB (Serial Camera Con-
trol Bus), a proprietary bus developed by OmniVision for camera con�guration.
The bus is similar to I2C [1] with some subtle di�erences, the most notable that
the data and clock ports are not open drain but regular CMOS logic I/O. Due
to di�culties with implementing the bus speci�cation, as can be seen in the
challenges section, only write capability was implemented. The registers and
their corresponding values that are used for camera initialization are shown in
table 3. More details on the speci�cations in [2].

The purpose of the setup is to make the camera output RGB565 data at
a pixel clock rate that is the same as the camera input clock rate supplied

1The VGA controller that we ended up using was sourced fromhttp://eewiki.net/x/HgDz

4

Table 1: Device utilization

Slice Logic Utilization Used Available Utilization

Slice Registers 239 18,224 1,00%
used as Flip Flops 239
Slice LUTs 535 9,112 5,00%
used as logic 464 9,112 5,00%
using O6 output only 261
using O5 output only 50
using O5 and O6 153
used as Memory 64 2,176 2,00%
used as Single Port RAM 64
using O6 output only 64
used exclusively as route-thrus 7
with same-slice carry load 7
occupied Slices 188 2,278 8,00%
MUXCYs used 296 4,556 6,00%
LUT Flip Flop pairs used 551
with an unused Flip Flop 320 551 58,00%
with an unused LUT 16 551 2,00%
fully used LUT-FF pairs 215 551 39,00%
unique control sets 29
slice register sites lost 105 18,224 1,00%
bonded IOBs 29 232 12,00%
LOCed IOBs 29 29 100,00%
#IOB Flip Flops 14
RAMB16BWERs 30 32 93,00%
BUFG/BUFGMUXs 2 16 12,00%
used as BUFGs 2
OLOGIC2/OSERDES2s 14 248 5,00%
used as OLOGIC2s 14
Average Fanout of Non-Clock Nets 5.42

5

Table 3: Camera Setup Settings

Register Value Description
CLKRC 0x00 Internal Clock
COM7 0x04 Common Control 7
COM3 0x00 Common Control 3
COM14 0x00 Common Control 14
SCALING_XSC 0x3A Test Pattern X
SCALING_YSC 0x35 Test Pattern Y
SCALING_DCWCTR 0x11 DCW Control
SCALING_PCLK_DIV 0xF0 Clock Divider
SCALING_PCLK_DELAY 0x02 Clock Delay
COM15 0xD0 Common Control 15

by the camera interface. Also some illegal default values are changed, again
see challenges section. The setup is managed by the cam_setup IP which in
turn uses a SccbInterf IP component for communication timing and driving
the I/O-pins. The cam_setup IP is a simple state machine where the con�g
state consists of a case construct and a counter that counts up. Depending
on the counter value a di�erent register is written. When the counter counts
past the last register associated value the state machine jumps to a done state
from which it never leaves. This works since the register values are only written
once, at system startup. The actual communication is handled by a SccbInterf
subcomponent. In SccbInterf everything needed for SCCB write operations is
implemented as state machine that shifts out data and clock on the respective
pins.

2.1.2 Camera Interface

The camera is capable of outputting a range of di�erent formats. The format
chosen for this project is RGB565 color at a 640 by 480 pixels resolution. For
the camera module to supply any data at all a main clock, xclk, is needed. This
clock, 10 Mhz, is supplied by the cam_interf IP and is clocking the internal
DSP responsible for format conversion and image scaling. The OV7670 then
supplies a pclk that clocks outgoing pixel data from the camera on an eight
bit parallel bus. A line is signaled by means of the href signal and each new
frame is indicated by the vsync signal. The state, hi/lo, of these signals can
be con�gured during camera setup but for this project the default values were
used with href and vsync active high. It is worth to note that vsync signals a
new frame and as such an active high vsync means that pixels should be read
only when vsync is low. The cam_interf IP samples the pclk, href and vsync

signals from the camera and contains a state machine that grabs one byte and
waits for the next or writes the RGB values to memory depending on previous
input. After failing to use the on chip scaling features the cam_interf IP was
rewritten to also do scaling of the input image. The scaling works by averaging
four by four pixels at a time and using the averaged value as image data. This
means that the video ends up at 160 by 120 pixels, (640/4) by (480/4).

6

2.1.3 Camera Connection

The camera was connected to the Nexys-3 board through the Pmod connectors.
The mapping can be seen in table 4. A simple connector was built and while
it provided basic functionality, it was later discovered that the long cables pro-
duced interference. This in turn added some noise to the picture. The connector
can be seen in �gure 5. The camera itself can be seen in �gure 6.

Figure 1: System Overview

2.2 Memory

After a few iterations and tests it was the general consensus that the onboard
16MB of Cellular RAM was too slow to use as video memory. It would work,
but as speed was deemed more important the plan was scrapped. Therefore
a BRAM controller was implemented in VHDL, named mem. This IP contains
three memory banks

• Bank 1 - for bu�ering video from the camera and output to movement
detection

• Bank 2 - for storing a single frame for movement comparison

• Bank 3 - video data for output to the VGA monitor

Because of the limited size of the BRAM, the picture was scaled to 160 by
120 pixels, more on that in the camera section. There was a need for three
banks because of the limited amount of read and write ports on the BRAM.
Limits in the synthesizing software produced unexplained errors until the port
issue was resolved. With this solution, there is support to add printouts to the
screen where the movement occurs. This is a bonus feature from solving the
challenges. However due to time constraints it has not been implemented yet.

The mem IP is implemented with three memory banks and three processes.
The cam process writes bank 1 and 3 continuously while bank 2 is only written
when the movement detector demands it, more on that in the movement detec-
tor section. The two other processes, det_rd_mem1 and vga outputs memory

7

Figure 2: Hardware Overview

contents to the detector and painter IPs respectively. More on that in those
sections. The memory banks requires an address to automatically return the
data located there or if written to, overwrites the data. This can be done on
two ports simultaneously at a single clock cycle delay.

2.3 VGA Interface

The VGA Interface takes care of the communication between memory bank 3
and the monitor. The interface is divided into two parts, the painter IP and
the vga_controller IP. The painter reads pixels from memory bank 3 and
outputs them on the VGA connector. Since the frame that is stored in the
memory bank 3 has a resolution of 160 by 120 pixels and the monitor is clocked
at a resolution of 640 by 480 pixels, the painter applies scaling to reach the
required output. While the painter reads from memory, the vga_controller
noti�es the painter when it should output the one byte RGB data. In order
to determine when the data should be sent to the monitor the vga_controller
must do some calculations based on a VGA standard, according to the VGA
speci�cations [3], using a 25 MHz pixel clock. The standard uses two signals
in order to tell where a certain pixel value should be applied on the monitor.
These two signals are horizontal and vertical sync. When the horizontal sync
is high, the monitor picks the pixel values and prints them on the current row.
When that row is completely printed it jumps to the next row to repeat the
same process. From the �rst row to the last row, the vertical sync is high. It
stays high for one frame and then drives to zero for two cycles according to the

8

Figure 3: System Schematic

pixel clock. The vertical sync signal de�nes the refresh frequency of the display,
or the frequency at which all information on the display is redrawn. This is
shown in �gure 7. Both the horizontal sync signal and the vertical sync signal
are driven high longer than the display time (HBLANK and VBLANK). The
reason is that the standard is suited for old CRT (Cathode ray tube) monitors
that needs the time to get into the new position. The vga_controller tells the
painter when the monitor is ready to recieve by sending a display_en signal.
The painter keeps track on where the pixel should be printed and therefore
where in the memory the pixel value is located.

9

Figure 4: Camera Interface

Figure 5: Camera Connector

2.4 Movement Detector

This part of the system, if activated, reads two of the memory banks. Where
bank 1 is the continuous stream of input from the camera and bank 2 is a �xed
frame, the reference picture. The detector IP compares each pixel in the two
frames and decides, based on a set sensitivity, if there is a big enough di�erence
between the two. The detector then decides if there are enough changed pixels
to warrant detection. This sensitivity is also set manually. If the system detects
movement it outputs a signal to LD1 on the Nexys-3 board. The detector then
resets the reference frame and restarts the process.

The detector is implemented as a simple state machine, waiting for input

10

Figure 6: The OV7670 Camera

Figure 7: VGA Timing, unmodi�ed original picture taken from
http://www.docstoc.com/docs/53768210/VGA-Timing-for-640x480-75-Hz-
refresh-rate

from user. When SW1 is high the state machine is activated. It then awaits the

11

Figure 8: Example of SCCB Speci�cation shortcoming. The only timing dia-
gram that describes tri-state capable two wire communication is empty

complete reference frame before comparing pixels.
The movement detector can with some �ne tuning detect if someone walks

past the camera. There is a lot of noise in the picture stream from the camera
and also the DSP is modifying the picture heavily. That is why the movement
detector sometimes indicates false positives or just doesn't detect movement at
all. The movement controller also needs to be tuned according to each camera,
since they seem to di�er a bit. Might be because of external circumstances like
blocked lens, di�erent lens focus or the interference between the cables in the
connector, as can be seen in �gure 5.

3 Challenges

During this project there were some challenges and problems, some were solved
or worked around and some remained obstacles.

3.1 Cellular RAM too slow

Initially the Cellular RAM was considered, because of the advantageous size.
The main reason why it wasn't possible to use that type of memory is that it
would be too slow to use with the desired frame rate. So, in order to maintain
the speed of the system the memory type was changed to BRAM instead. The
speed of the BRAM suited the system better since one can request an element
in the memory and get it within the same clock cycle.

3.2 BRAM too small

When solving the problem with slow memories, another problem emerged. The
BRAM is only 576 Kbits large and that is too small to store a full size VGA frame
in eight bit color. There was no way to �t the frames desired in the memory.
But the system needs to store frames for the detection to work. Instead of
storing full sized frames they were scaled to down 25% of their original size
before storage.

3.3 SCCB speci�cation

The speci�cation of the SCCB as supplied by OmniVision was a big hurdle.
While the speci�cation covers the three wire version at some length, the two-wire
version used by the OV7670 is barely mentioned. Also, only one version of the

12

speci�cation did refer to a timing diagram but the �gure referred to was empty,
see �gure 8. Another issue with the speci�cation was the nomenclature. One
example of this is the fact that the ninth, and last, bit of each serial transmission
is called the don't care bit initially leading one to believe that it's value was
not important. Reading on in the speci�cations does reveal however that the
so called don't care bit is thoroughly speci�ed. After some work the write
functionality was implemented successfully and as only one camera initialization
was performed, at startup, and then never changed it was good enough for this
project.

3.4 Illegal default values

The OV7670 Implementation Guide [5] is a document that aims to aid in devel-
opment of a camera back end using the OV7670 as a camera front end. This
document contains a small note that states

Note: All registers shown as reserved have no function or are
very sensitive analog circuit references. Use OmniVision reference
values (not default values).

The mentioned reference values are unfortunately not available in the datasheet
but only through OmniVision after signing an NDA (Non-disclosure agreement)
and even then not to individuals. Since there was no way of knowing what values
to output, there was a lot of guessing and futile searches on the internet involved.
The image output from the camera did not really look anything like what was
expected but after a lot of trial and error there was success in �nding a set of
values that at least gave a recognisable image.

3.5 Pixel clock on non clock port

The Spartan-6 uses clock bu�ers for clock signals on the I/O pins. These clock
bu�ers are used to provide a clean skew free clock signal but are only available
on certain pins. The pinout of the interface cables between the camera and the
FPGA did not allow for use of these clock bu�ers and so there was an error
message when trying to synthesise

08 - A clock IOB / BUFGMUX clock component pair have been
found that are not placed at an optimal clock IOB / BUFGMUX
site pair...

This was solved by instead of using pclk as a clock source, pclk was sampled at
each system clock, at ten times the pclk frequency, and using a state machine
that keeps track of which clock pulse it is currently at. The best solution to
this problem would be to re-route the pclk signal to a location that could be
bu�ered with a clock bu�er but as time ran out it was decided to go with the
not so good solution just to have something to show. If in the end there would
have been time to spare it could easily have been changed back to the edge
driven solution and another pinout for the interconnect could be manufactured.

13

3.6 DSP causing trouble

The camera chip has a built in DSP that continuously adjusts gain and white
balance among other things. This makes it harder to use a simple algorithm
that counts pixel changes, as even under near identical conditions the pixels
are always varying. According to the datasheet the DSP can be circumvented
and the camera is able to output the raw values from the image matrix. Due
to the problems with con�guring the camera it was never possible to test this
but with more time one could choose raw Bayer pattern RGB values and do all
processing in the FPGA instead of reading preprocessed RGB565 values.

3.7 Hard to prototype in software on the board

Due to the tight timing constraints for both the camera and the VGA interface it
was di�cult to �nd things to prototype in software. Given that an interface was
needed for the camera and the VGA in hardware with memory access and all it
made sense to make the movement detector in hardware as well. With more luck
con�guring the camera the plan was to have motion tracking in software running
on a Microblaze. Then the bottlenecks could have been identi�ed and hardware
accelerators could have been implemented. As things turned out all that was
managed to prototype in software was an OpenCV [4] powered background
subtraction algorithm on a laptop. In the event of a successful project the plan
was to port the OpenCV algorithm to the Microblaze and use that on a scaled
down version of the actual image.

4 Lessons Learned

Besides from the obvious like getting more comfortable with VHDL for synthesis
and working with the Xilinx tools and the Spartan-6 in general there were
some things that will be taken in consideration into future projects, especially
embedded systems projects.

4.1 Do calculations beforehand

This might sound obvious, but there was actually a fair amount of time spent
in the beginning, implementing memory controllers for the on board Cellular
RAM, thinking one could use it as a bu�er between the camera and the VGA
controller. Looking at the datasheet and calculating the maximum throughput it
did look promising. But when it was �nally realized that maximum throughput
is only important when doing continuous reads and writes, and what's needed
for the camera and VGA are single reads and writes at high frequency, the idea
of using Cellular RAM was quickly scrapped and instead the image was scaled
to �t the BRAM. Had this been thought through from the start and proper
calculations had been done on how and when the components connected to the
memory needed data it would have saved the trouble of writing and con�guring
memory controllers for the Cellular RAM.

14

4.2 Implement in small steps

This is something that was actually practiced from start to �nish in this project.
The IPs were broken down into subcomponents, that was implemented and
thoroughly tested before using them in larger, more complex components. This
led to the testing of large components being more about interconnections than
about function. This is good since functional testing of a small component
with one simple function is unproportionately simpler than doing the same for
a complex component with many functions.

4.3 Datasheets does not always have the answer

It was made clear that the datasheets sourced were not always accurate or com-
plete. One example being that of the illegal initial register values, see problem
section. This might not be a problem for big corporations buying large quanti-
ties of cameras from OmniVision since they could probably get in contact with
sales engineers and the like, but one can imagine it being a problem for smal-
l companies and startups that does not have the bargaining power of a large
company. Even though one can't know if this is true its something worth taking
with in the event of starting a business based on some technology.

5 User Manual

Since this project implements movement detection in pure hardware, no software
is needed. First of all you need to connect the camera to the Nexys board. The
port mapping in table 4 show which ports are connected where. SW0 is the reset
switch, with active low. The system should be reset after �ashing the Nexys-3
board. SW1 activates movement detection, with active high. A monitor capable
of 25Mhz VGA needs to be connected to the VGA connector on the Nexys-3
board. When the camera is correctly connected to the Nexys-3, connect the
FPGA to your computer via the dedicated micro USB jack. Then open the
program named Adept. Make sure that Adept has located your device. If so,
load the top.bit �le to your Nexys-3. When the system is running you must
make sure that SW0 is high. To reset the system, drive it to zero and back again.
SW1 is used for toggling the motion detection, drive it to one to enable. LD1 will
indicate movement detection.

6 Contributions

The three authors worked closely on every part of the project but here are lists
on how the work was divided.

6.1 Einar Vading

• Presented the initial idea, got the cameras from ebay

• Decided on the BRAM memory controller after issues with the initial tests

• Part of the �nal presentation

15

Table 4: Port Map

Nexys-3 port OmniVision 7670 port
T12 RESET
V12 SIO_C
N10 VSYNC
P11 PCLK
N9 SIO_D
U11 HREF
V11 XCLK
K2 D[7]
J3 D[6]
K1 D[5]
J1 D[4]
K1 D[3]
K3 D[2]
L3 D[1]
K5 D[0]

• Wrote initial versions of cam_interf, mem (BRAM controller), cam_setup,
SccbInterf and painter.

• Project report sections, Introduction, Camera, Problem section save from
Cellular RAM and BRAM subsections, Lessons learned.

6.2 Alexander Nässlander

• Designed initial VGA controller and performed tests.

• Looking up standards for VGA timings and calculations.

• Early state Cellular RAM controller for the VGA controller.

• Part of the �nal presentation

• Project report sections VGA Interface, part of the problem section, part
of the user manual section

6.3 Carl Cristian Arlock

• Part of the project proposal presentation

• Considered memory solutions, presenting several memory Cellular RAM
controllers

• Implemented detector and performed related tests

• Modi�ed mem to �t the needs of the extended system

• Tested the camera setup and interface module

16

• Project report sections Memory, Movement Detection, part of the user
manual section

• LATEXenthusiast and layout artist

• Spelling and grammar checker

17

References

[1] I2C on Wikipedia, http://en.wikipedia.org/wiki/I%C2%B2C 20131027

[2] OmniVision Advanced Information Preliminary Datasheet,
http://www.voti.nl/docs/OV7670.pdf 20131027

[3] VGA on Wikipedia, http://en.wikipedia.org/wiki/Video_Graphics_Array
20131027

[4] Open Source Computer Vision, http://opencv.org/ 20131027

[5] OmniVision Implementation Guide, http://www.robokits.co.in/datasheets/OV7670.pdf
20131027

18

