EDA385 Bomberman

Fredrik Ahlberg
ael09fah@student.lu.se

Adam Johansson
rys08ajo@student.lu.se

Magnus Hultin
aelO08mhu@student.lu.se

2013-09-10

1 Concept

Bomberman is a classic video game series, with the first incarnation published
in 1983. The objective is to explore the map and take enemies out of action
using bombs. The abilities of the player (i.e power and number of bombs) can
be improved by power-ups.

This project aims to reimplement the multiplayer mode, where up to four
players meet on a shared map.

Figure 1: Screenshot from Super Bomberman 2. The image is cropped.

Gl
l
.M
|
=
1
L
]

2 Implementation

2.1 System overview

The work of the console is coordinated by a MicroBlaze processor, which exe-
cutes the game firmware from BRAM.

Attached to the system bus and thus the memory space of the processor is
also:

e A gamepad interface.
This should allow up to four game pads to be connected to the console
and polled by the CPU.

e A graphics controller.
This provides a memory and computionally efficient way of generating the
complex graphics.

e A sound generator. (Optional)

The game would not be as fun without sound effects and cheesy lo-fi music.
This may be implemented as far as time allows. The structure of this block
is to be determined.

The video controller generates a CPU interrupt at the end of each frame
(vblank). The corresponding interrupt routine polls the gamepads, updates
the game state and the sound playback, thus serving as the core of the game
firmware.

BRAM CPU
Program & Data Microblaze
A
IRQ, System Bus
")
l"
'l
VGA Timing) GPU Sound
Cleirnzlpzl I Generator Sprites & Tiles Generator
Sync RGB Audio
|:| Our IP
Gamepads VGA-monitor
|:| Existing IP

|:| Existing hardware

Figure 2: System block diagram

2.2 Graphics

Memory usage is a major constraint when dealing with graphics. To keep things
simple, this subsystem is designed so as to avoid having to use external SDRAM
and implementing a SDRAM controller, and instead putting the BRAM to good
(and efficient) use.

The solution was a de facto standard in the video game industry; dividing
the image into two or more planes, where static content like the background is
described as a matrix of "reusable” tiles (tilemap), and players and items are
small, semitransparent images at arbitrary coordinates (sprites), drawn on top.

To further reduce memory usage, each pixel in the tiles and sprites is a actu-
ally color index in a palette, which is used to determine the color. A multitude of
palettes can be stored in BRAM at the same time, so each entry in the tilemap
or sprite attribute memory also specifies a palette indez.

€ [EE]

Tilemap Sprites

Figure 3: The tiled background and the sprites make up two separate graphic
planes, which are then superimposed.

The tilemap and the sprites are rendered separately, and then muxed to-
gether right before the palette lookup. The background is rendered at pixel
clock rate by cascading some BRAMs.

The sprite rendering is much more complex as a very large amount (512) of
sprites may be defined at any time. The sprite plane is therefore rendered one
scanline in advance and stored into a line buffer in BRAM.

A state machine clears the unused part of the line buffer, and then iterates
the sprite attribute memory to find the sprites that intersect the currently ren-
dered scanline. Those sprites are blitted into the line buffer, while considering
the transparency of the sprites.

3 Schedule

The proposed schedule is shown below.

Software is developed in parallel with hardware using an emulator frame-
work. A version control system (git) is used to allow safe and efficient parallel
development of both software and hardware subsystems.

LP1

Planning

Hardware {]

Software [|

Integration [

Testing l

Report [

Figure 4: Proposed schedule

