
Project proposal
MIDI MONSTER

EDA385 - Design of embedded systems, advanced course
Advisor: Flavius Gruian

Johan Wennersten (dt08jw2@student.lth.se)

Arvid Lindell (dt08al6@student.lth.se)



1 Brief functionality

Figur 1: Intended system

1.1 Purpose
We intend to build a MIDI player with some sort of game attached. The game
will be similar to Guitar Hero or Bit Trip Runner. The idea is to combine the
timing of the music with a game.

1.2 Music
The music will be composed of square, triangle and sawtooth waves. These
will be generated using DDS (Direct Digital Synthesis), which is a technique
to playback a single sample (of for instance a single period of a waveform) at
various speeds to create notes of different frequencies. DDS will be described in
more detail in the final report.

MIDI-data will be parsed using the CPU. We are going to have 8 or 16
hardware-based channels, each attached with DDS functionality. The CPU will
send commands to the channels, with information regarding what frequency is
to be played, volume setting, and if the channel is active.

1.3 Video output
The game will be visualized using a monitor connected to the onboard VGA-
connector. We are going to use a resolution of 320x240 pixels (QVGA) with

2



4/8bbp. A custom VGA controller will be constructed. In-game backgrounds
will probably be generated using custom hardware.

1.4 Input
Input to the game is going to be delivered using a USB keyboard (the Nexys
will convert the USB-signals to PS/2 in any case, so we will be constructing a
custom PS/2 controller).

2 I/O processes

2.1 Sound
The hardware playback channels will be connected to the CPU using the PLB,
they are to be controlled using software-accessible status registers. The resulting
mix (of the 16 channels) will probably be converted to an analog signal using a
simple R2R-ladder.

2.2 Video
The entire frame will be kept in Micron RAM. Video data will be sent from
RAM to the VGA controller via the PLB (utilizing a FIFO), in turn using a
Xilinx DMA controller.

2.3 Input
Data from the PS/2 controller will be accessible using a status register, with a
couple of predefined keys reported in a bitfield. To clarify, the controller itself
will keep track of which keys are currently pressed.

3 Memory
• The CPU will use a BRAM block for instructions, heap, static data and

stack. The VGA FIFO will probably be placed in BRAM.

• As mentioned above, the video frame data will be placed in Micron RAM
and will be accessed by the VGA controller using DMA.

• The DDS samples will be kept in distributed RAM for ease of access.

• MIDI files will probably be kept in non-volatile PCM memory. Another
(worse) solution is to simply upload different files using the UART.

4 Feasibility
We have previous experience using DDS, PS/2 communication and VGA-timing.
We have a rudimentary MIDI parser written in C, which should be fairly easy
to port.

3



5 Time plan

Week Activity
1–2 Basic VGA working. PS/2 controller complete.

Rudimentary MIDI/DDS functionalty.
3–5 Integration, testing, report
6 Report

4


