Tower Defense

Design of Embedded Systems-Advanced course

2012-10-26

Robin Palmblad
dt08rp0@student.lth.se

Emma Hilmersson
pi07eh2@student.lth.se

Niclas Thuning
et06nt3@student.lth.se

mailto:dt08rp0@student.lth.se
mailto:dt08rp0@student.lth.se
mailto:dt08rp0@student.lth.se
mailto:dt08rp0@student.lth.se
mailto:dt08rp0@student.lth.se
mailto:dt08rp0@student.lth.se
mailto:dt08rp0@student.lth.se
mailto:dt08rp0@student.lth.se
mailto:dt08rp0@student.lth.se
mailto:pi07eh2@student.lth.se
mailto:pi07eh2@student.lth.se
mailto:pi07eh2@student.lth.se
mailto:pi07eh2@student.lth.se
mailto:pi07eh2@student.lth.se
mailto:pi07eh2@student.lth.se
mailto:pi07eh2@student.lth.se
mailto:pi07eh2@student.lth.se
mailto:pi07eh2@student.lth.se
mailto:et06nt3@student.lth.se
mailto:et06nt3@student.lth.se
mailto:et06nt3@student.lth.se
mailto:et06nt3@student.lth.se
mailto:et06nt3@student.lth.se
mailto:et06nt3@student.lth.se
mailto:et06nt3@student.lth.se
mailto:et06nt3@student.lth.se
mailto:et06nt3@student.lth.se

Abstract

This report is about implementing the game Tower Defence on a FPGA Nexys 3 board.
Tower Defence is a classic game where the players’ goal is to prevent enemies from
destroying the players base by building towers that kills the enemies.

There is "no standard hardware on an FPGA". You mean the Wizard generated system.

Modules have to be added to fRelstandardihardwarelonthie’FPGA. The game logic

needs a timer and a keyboard controller. The timer updates the game in a specific time
interval and the keyboard controller interrupts the game when a key is pressed.

The game is displayed on a screen over VGA. To do this a VGA controller is used which
is connected through a bus to the Microblaze. The VGA controller is also connected to
a background generator, a foreground generator and a mouse displayer which decides
what to show on the screen.

Flavius Gruian

Flavius Gruian
There is "no standard hardware on an FPGA". You mean the Wizard generated system.

Table of Contents

Abstract
Table of Contents
1 Introduction
2 Hardware solution
2.1 Graphic accelerator
2.1.1 VGA controller
2.1.2 Background generator
2.1.3 Foreground generator
2.1.4 Mouse displayer
2.2 Game board memory
2.3 PS2 controller
2.4 Device Utilization Summary
3 Software solutions
3.1 Timer
3.2 Keyboard
3.3 Game logic
3.4 Registers & memory
3.4.1 Registers
3.4.2 Memory
4 Installation manual
5 Problems
5.1 Hardware
5.2 Software
6 Lessons learned
7 Contributions
8 Reference

O NOOT OO~ DdODN

1 Introduction

This report describes how to implement the game Tower Defense with a NEXUSI3
FPGA. Tower Defense is a strategy game, where the player builds towers to kill the
enemy, who are trying to destroy your base.

The final architecture is almost as the initial proposal. The main different is that a
keyboard is used instead of a mouse. The Microblaze was also connected to the BRAM,
to be able to update the matrix of the gameboard which are saved here.

Due to lack of time the audio controller was never implemented.

BRAM
o\
b=iatld . - Microblaze Grafik LCP Y
N interface monitor /
—L‘"‘v‘

Figure 1: Block diagram of the implementation

The game logic is implemented in software. A player controls the game with a keyboard
and the game logic reacts to the keystrokes through interrupts. The game logic is
updated with timer polling and at each polling the software sends information about
what to display on the monitor. This data is sent to hardware through the PLB and are
used in BRAM and the graphic accelerator. The graphic accelerator are responsible of
displaying the background, the foreground and the cursor. What to be displayed in the
foreground are decided by the gamelogic and this is stored in BRAM.

2 Hardware solution

The main structure of the hardware consists of a Microblaze, graphic accelerator and

a memory which contains the board games output. The difference components are
connected via a bus and internal signals. All the communication through the Microblaze
is done by the bus which is connected to different registers on the graphic accelerator

Flavius Gruian

Flavius Gruian
game logic

and the memory.

2.1 Graphic accelerator

To make the graphics on the monitor to work, a vga controller is needed. Besides the
vga controller the color to the monitor needs to be controlled. In this solution there is a
background generator, foreground generator and a mouse displayer

By putting background generator, foreground generator and mouse displayer after each
other the RGB output can be controlled. The components are placed after its priority

in which layer the output should be. The bottom layer consists of the background and
on the top of background the foreground should be placed. The last layer is the mouse
displayer which should always be visibly on the screen.

VGA
Controller

Hcount

[0:10],

Veount

[0:10]

¢ Y ¢
RGB RGB RQB

Background [0:7] Foreground 1071 > Mouse o]
Generator Generator Displayer >

Figure 2: Block diagram of the graphics accelerator

2.1.1 VGA controller

Before sending the RGB color to the monitor it’s important to know when it's possible
to send the RGB color. The VGA controller in this project was already finished' and
implemented into the hardware. The behavior of the controller is described below.

It's only during 640 cc (clock cycles) of 800 cc on horizontal line it's possible to write to
the VGA output. The reason for that is because the horizontal scan needs to retrace
and restart to prepare for the next scan of horizontal line. For the vertical line it’s the
same principle but instead of cc it has hc (horizontal cycles). Because the vertical line
has to retrace and prepare for the next frame. The vertical line has 480 hc in the range

Flavius Gruian
Memory mapped access to the accelerator?

Flavius Gruian

of 528 hc for one frame.

The solution for knowing when to write is done by a signal called blank, which goes

low when it's possible to write. To know which pixel to write to two signals called
horizontal sync (HS) and vertical sync (VS) are generated. These signals keeps track of
current horizontal and vertical position of the pixel the corresponding scan currently is
representing.

The monitor needs to update with a frequency of 60 frames per second to avoid
flicker. A clock with 25 MHz is enough for this demand. This clock is synchronized
with the background generator, the foreground generator and the mouse displayer for
synchronization of the RGB outputs.

¢ 640 pixels per row
Column 0 Column 639
Row 0 \
e ————— N
(-:*f """""""""""""""""""" }
S Npomommommn X \ """"""""" }
Horizontal Horizontal
retrace sean
o 480 pixels
Monitor et oot
Screen
Vertical
retrace
............................. Z;\:_-)
< ------------------------------- ‘\‘ ;
Row 479 |

Red, Green, Blue

You should always give the source of your pictures, if you
borrowed them from somewhere!

ITTLLLL LTI

Horizontal Sync

Time and number of
25.175MHz clock cycles

Red, Green, Blue

——————— 640 column pixels ——»

377],154’
95 cycles

D

C
“T179 us
45 cycles

2542 ps
640 cycles

E —»
0.79 ps
20 cycles

31.77 us

800 cycles

!

Vertical Sync

Time and number of

horizontal cycles |

le—————480 horizontal cycles———»|

e P
64 us
2 cycles

Q
1020 ps
32 cycles

R
15250ps
480 cycles

S —
450 ps
14 cycles

16784us
528 cycles

Figure 3. Demonstration on how the monitor scan works

2.1.2 Background generator

To generate the background a background generator is used. The background is never
changed and therefore the contains of how the background should be displayed is

stored in a ROM memory.

The background is built up by tiles of 16x16 pixels. Tiles of 30x30 builds up the left side
of the background which contains the grass and path. The remaining right side is gray.
The gray area is displaying the menu, score and lives. Here it's also a tower which the

user has to choose for the tower to be placed.

Flavius Gruian
You should always give the source of your pictures, if you borrowed them from somewhere!

Flavius Gruian

Flavius Gruian

Figure 4: A screenshot of the game

When storing the information of the background in the ROM it will be stored like a long
vector. By choosing each horizontal line of 32 tiles the technic of how to get the correct
tile would be easier. The last 2 tiles are just overwrite by the gray area. By using the
number 32 a shift operation could be done easily for the calculation of the tile. For each
vertical line to by display an integer division of 16 of the vertical line is done, the same
is done for the horizontal line. Then by increasing the number by a multiplication of 32
for the vertical line and then add the number of which horizontal line to be displayed the
exact tile in the long vector of the ROM is used.

xdiff ;= "0000" & hcount(10 downto 4);
ydiff ;= "0000" & vcount(10 downto 4);

By shifting with 4 bits and only use the MSB:s we get a division of 16 and an integer as
result. This is done for placing the correct pixel in right tile.

Romaddress = "(ydiff (4 downto 0)" & "xdiff(4 downto 0)"

The equation above show how to calculate which ROM address to be read. By
shifting ‘ydiff’ by 5 bits a multiplication of 32 is done.

Ok! Detailed enough description of how the background works.

Flavius Gruian
Ok! Detailed enough description of how the background works.

Now the background knows what to be displayed and it will then send the RGB color for
the object further into the foreground generator.

2.1.3 Foreground generator

The responsibility of the foreground generator is to display enemies, towers, score

and lives. The foreground generator gets its information of enemies and towers from a
BRAM memory. The method for displaying and get the information is the same as in the
background generator but with some modification. Instead of a ROM it uses a BRAM
(Game board memory) and the enemies and towers contains of 32x32 pixel so the
modulo is changed to 32.

The graphics of how an enemy and a tower looks like is stored in a ROM memory. The
shape of the objects is done by having ‘1’ for color and ‘0’ for transparent.

The score and lives are stored into a register. The register is updated from the
Microblazer via the bus. By using a binary to BCD(binary-coded decimal) component
the correct number can be displayed. The shape of each number from zero to nine
is stored into a ROM and has, as the tower and enemy, information about if the pixel
should be transparent or not.

If the foreground discovers during the scan of the monitor that it should display
something it will replace the colors from the background and turn it into its own, in other
case the colors from the background just passes by the foreground generator. The
foreground generator sends the color to the mouse displayer. This is all done pixel by
pixel.

2.1.4 Mouse displayer

The last step is to display the mouse over the foreground and its output signals, red,
green and blue (RGB), are connected directly to the pin at the FPGA.

The mouse displayer was taken from Digilents WébSsité2 and just modified to be able to
change the cursor when a tower was selected.

Flavius Gruian
Are you still using tiles to hold information? Or is it a list of objects or a fixed array of objects?

Flavius Gruian

Flavius Gruian
References are usually annotated by square brackets: [2]

Flavius Gruian
BTW: You might want to learn LATEX, which is a great help when writing reports like this.

— | CLK
RED OUT ——»
———» BLANK
—| XPOS
—| YPOS
———| HCOUNT
GREEN_OUT |——
—| VCOUNT
—— RED _IN
——| GREEN_IN
———| BLUE_IN

BLUE_OUT (—
——| PIXEL_CLK

Figure 5: The component of the mouse displayer

XPOS and YPOS, which are the positions of the mouse, are taken from a register, sent
from software. HCOUNT, VCOUNT and BLANK comes from the VGA controller. The
RGB in signals are from the foreground generator.

A mouse will be display if the players don’t decide to place a tower, then the cursor will
change to look like a small tower until the tower is placed on the screen.

The pictures of the mouse and the tower are stored in a ROM memory and are 16x16
pixels. The difference of HCOUNT and VCOUNT and the position of the mouse, will
decide the address of the ROM. For storing the picture of the mouse 2 bits are used,
where “00” means black, “01” is white and the others are transparent, which means that
the RGB signals in will be the output.

2.2 Game board memory

This memory is generated from Xilinx, when creating a new peripheral and has been
modified to have two ports, which are connected to the foreground generator.

A vector of 256 representing a 16x16 matrix of 2 bits is stored in the memory and the
addresses are updated from the Microblaze, via PLB. The matrix corresponds to the
game board and each address contains information of what to shown on the screen.
The input signal from the foreground generator decides the read address and the output
from this module gives the foreground information about what to display.

10

2.3 PS2 controller

The PS2 controller only had to be added since it could be found in Xilinx Platform
Studio when creating the hardware. An interrupt controller was added and connected
to the PS2 controller to be able to handle when keys are pressed on the keyboard.
The external ports L12 and J13 are connected to the PS2 controller representing the

keyboard.

2.4 Device Utilization Summary

The table below show how the hardware resources are used. Because we didn’t have
time to implement real picture in BRAM the memory usage is small.

Used Available % utilization
Slices LUTS 6395 9112 70%
Slice Registers 5685 18224 31%
Memory 202 2176 9%

Table 1: Device Utilization Summary

3 Software solutions

To put the game together the software consists of a timer for updating the game, a
keyboard for reading inputs from the player, the game logic and sends information to
registers and memory for deciding what to display on the screen. The software is written
in C-programming language and writes values to the hardware. The hardware then
reads the values as bits, therefore a common representation of the values in software

and hardware had to be decided.

3.1 Timer

For updating the game in a specific time interval a timer is used. At each timer interval
code is executed in the game logic and a reset of the timer is performed. A timer has to

be added to the hardware to be able to use a timer in the software.

11

Flavius Gruian
When you talk about hardware is customary to also give the clock frequency, and the type of FPGA used (in this case).

3.2 Keyboard
A keyboard is used as game controller and an interrupt controller handles keys pressed

on the keyboard. The interrupt controller moves the cursor when pressing ‘w’, ‘a’, ‘s’

and ‘d’. 'k’ is a multifunctional button and ‘I’ is used for resetting the game. The cursor
has two representations, one for the game logic and one for the mouse displayer for
removing unnecessary conversions. To change the appearance or position of the cursor

the program writes to a register.

3.3 Game logic

The game logic binds everything together. It updates the game each time polling is
done on the timer. At each update the program can finish the game by stopping the
timer polling, change the state of enemies and update the menu. Every time something
is to be changed on the display the program writes to the BRAM memory what to
remove or what to display. The board is defined as a 16x16 matrix where every element
in the matrix corresponds to a square of 32x32 pixels and the last row and column is
just for making the calculations easier in the hardware. To update the matrix with new
values two matrixes are used and one of them is always the new instance and the other
one is the current instance.

3.4 Registers & memory

The program sends information to registers and memory to be able to decide what to
show on the display. To be able to send information the program includes drivers for
registers (VGA) and memory. The program can then use functions to write to registers
and memory. The information is sent in form of integers represented as hex or decimal
and is read by the hardware as bits.

3.4.1 Registers

For deciding cursor position, cursor appearance, score and lives, registers are used.
The cursor position is decided by register 0(reg0) where the first half of the bits is the
x-position and the other half is the y-position. When sending ones to reg1 the cursor
changes into a tower and when sending zeros the cursor changes into a mouse cursor.
Score and lives are placed in reg2 where the first half of the bits represents lives and
the other half represents score.

12

Flavius Gruian
I do not quite understand here: Do you poll the timer? How does that work in order to keep a natural flow of the object movement? Since you use interrupts on the keyboard why not interrupts on the timer as well?

3.4.2 Memory

The memory is used in another way than the registers. Instead of sending information
to the same place as with the registers, when sending information to the memory it is
decided where on the memory the information will be sent. The memory is represented
as a long vector, to decide where on the memory to send the information the matrix
position is converted to a vector position and the data is just sent as a short number
representing a type.

4 Installation manual

To run the game a keyboard and a VGA monitor has to be connected to a NEXtsSI3
FPGA board and the file download.bit has to be downloaded to the board. To move

the cursor the keys ‘a’,’w’,’d’ and ‘s’ are used and ‘K’ is used for clicking, either to buy a
tower or to place it. ‘' is used for restarting the game.

5 Problems

5.1 Hardware

The major problem during this project was to understand how the Xilinx program worked
and how to add new components. This problem occurred because a new version was
used in this course compared with the previous course and we had no other experience
with Xilinx. After some time this was figured out, mostly by trying and asking other
groups and the teacher.

The initial plan was to control the game with a mouse, but this led to a lot of problems.
First,

because of a new board with USB input instead of PS2, led to that the mouse
controller found at Diligent website couldn’t be used. After failure trying to

modify this controller the inbuilt PS2 controller were used and sent the

signals directly to software. But the software couldn’t get any interrupts from

the mouse so it was determined that a Keyboard would be used instead.

13

Flavius Gruian

Flavius Gruian
Nexys

5.2 Software

The keyboard and the timer changes and updates the game. The first approach to solve
this was to use interrupt for both the timer and the keyboard. This never got to work with
a common interrupt controller for both even though a solution from another project was
tested. To work around this problem polling was used on the timer instead of interrupt.

Interrupts caused another problem when reading from the keyboard in small intervals.
The bytes read places in a queue so that the cursor will move in the previous direction
instead of the actual one and not move enough steps when pressing keys fast. The
interrupts were handled slow because there was too much code in the interrupt handler.
To solve this as much code as possible was moved outside of the handler.

6 Lessons learned

The lessons learned during working with this project were how to divide the work and
that it’s important that the whole group doesn’t focus on the same problem. In the
beginning of this project all tried to get the mouse to work, which led to that nothing
else was done. It would have been better if one focused on the mouse problem and the
others focused on moving on.

Much time was spent on learning the new Xilinx which led to a better understanding of
Xilinx and how to use it.

7 Contributions

For this project we divided the work into two main parts, hardware and software. Due to
that one of the project member already had good knowledge of c-programming and the
other two in VHDL-programing, we could easily divide the work. We decided to do more
effort on the hardware because we were two person coding in VHDL.

All the c-programming was done by Robin. For the hardware, Niclas and Emma
did everything by splitting the work up and also collaborate in most parts. All were
responsible for testing and debugging the program.
The software part in this report is written by Robin, Emma wrote about the mouse
displayer, the game board memory and the problems in the hardware. The vga

14

Flavius Gruian
Ok! Good

Flavius Gruian

controller, background generator and the foreground generator is written by Niclas. The
rest of the report was done together.

8 Reference

[1] VGA controller reference component: http://www.digilentinc.com/Products/
Detail.cfm?NavPath=2.400,789&Prod=NEXYS2

[2] PS2 Mouse Displayer reference component:
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2.400,789&Prod=NEXYS2

Good work, in the end! You had some difficulties on the way but after a
good deal of work, you came through. Nicely done, even if more
improvements would have make the game better.

15

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
Flavius Gruian
Good work, in the end! You had some difficulties on the way but after a good deal of work, you came through. Nicely done, even if more improvements would have make the game better.

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2

