
Tetris game with NES gamepad
EDA385 Final Report

Jimmy Assarsson, dt08ja2@student.lth.se
Linus Karlsson, dt08lk9@student.lth.se

Antoine Morineau, morineau.antoine@gmail.com

October 26, 2012

Abstract

This report describes the design of a Tetris-like video game, constructed in both
hardware and software on an FPGA development board. Both the hardware and software
are described, together with how the di↵erent parts communicate with each other. The
end result of the project is a game that can be played with a gamepad, on an external
VGA-compatible monitor and with background music.

Contents

1 Introduction 2
1.1 Changes from initial proposal . 3

2 Hardware 3
2.1 VGA Controller . 3
2.2 FSL Handler . 4
2.3 The interface . 4

2.3.1 Dynamic interface . 4
2.3.2 Decoding the vectors . 4
2.3.3 Static interface . 6
2.3.4 Multiplexer . 6

2.4 Music . 6
2.5 Processor, memory and other components 7
2.6 Device utilisation . 7

3 Software 8
3.1 Timers . 8
3.2 Game logic . 11

3.2.1 Moving the block . 11
3.2.2 Collision detection . 12
3.2.3 Clear lines . 12
3.2.4 Communication with the hardware 12
3.2.5 Interrupt service routine . 13

3.3 NES gamepad . 13
3.3.1 The gamepad . 13
3.3.2 Software . 15

3.4 Memory usage . 15

4 Documentation 16

5 Problems and conclusions 17

6 Lessons learned 17

7 Contributions 18

A Evolution of the project 19

B FSL protocol 19

1

1 Introduction

This is the final report of the project in the course EDA385: Design of Embedded Sys-
tems, Advanced Course at Lund University, Faculty of Engineering. The project has
been done in a three person group, over the scope of seven weeks. The goal of this
project was to implement a Tetris video game on an FPGA development board. The
development board used in this course is Digilent Nexys 3 Spartan-6 FPGA Board [1].

Tetris is a puzzle game where the player should rotate and move tiles so that they
form complete lines. The player gets points for every line cleared, and the goal is to get
as many points possible. As the player clears more lines, the level of the game increases.
This increases the speed and makes the game more di�cult. The game ends when the
player fills the entire height of the game area.

The video game is displayed on a monitor connected to the board with a VGA cable.
The game is controlled by a NES gamepad. Score and other statistics are shown on the
monitor next to the game area. Furthermore, music is heard as the user plays. The
tempo of the music increases as the user reaches higher game levels.

An overview of our hardware architecture is shown in figure 1. We have written two
custom hardware components: VGA Controller and Concert. The software is written in
C and is running on the MicroBlaze processor. Communication between software and
hardware is done using the FSL (Fast Simplex Link). Furthermore, we have a connection
between the VGA Controller and the Concert component. This connection makes the
music tempo depend on the current level of the game.

Figure 1: Overview of hardware architecture

2

Flavius Gruian
Connecting the speed of the game
to the music tempo in hardware is
an interesting solution.

Flavius Gruian
This diagram is not very accurate, since most of these peripherals are connected
via a PLB bus. This is not obvious here.

1.1 Changes from initial proposal

We have followed our initial project proposal well. The di↵erences between the final
project and our proposal is listed below:

• The score is shown on the monitor instead of the 7-segment display.

• Sound is implemented.

• There are di↵erent levels implemented in the game.

All of these changes were listed as possible improvements in our project proposal.

2 Hardware

2.1 VGA Controller

In order to display a picture on the screen, di↵erent signals must be sent. Monitoring
the screen is done with the signals HS and VS. As we want a 60 Hz refresh rate, the
timing of both those signals is shown in figure 2.

Figure 2: Timing to monitor the screen [5, p. 17]

The architecture implemented to create those signals is showed in figure 3 .

Figure 3: VGA controller architecture

The components: Horizontal synchronization and Vertical synchronization are two
state machines. Each state displays one time, according to the table in figure 2. Thanks

3

Flavius Gruian
Very nice that you implemented
more than you set out to do.

Flavius Gruian
Good you give a reference!

to two counters, we know the current position of the pixel on the screen. Finally, as the
pixels must be switched at the frequency of 25 MHz, we have implemented a new clock
which gives the correct frequency. The occupancy of this part is given in table 1.

2.2 FSL Handler

The FSL handler is the link between the software and the hardware parts. This compo-
nent reads and stores the words in registers. The words are updated each time the game
state changes. We store 23 words. The 20 first words are using to display the game area
and the three others to give other information. Indeed, there are only 20 lines in the
game area. So we have one word for each line of squares.

Moreover, the software part and the hardware part do not use the same clock; they
are asynchronous. That is the reason why we just read the vectors which contain useful
information for the line displayed. The others are just stored and can be updated by the
software whenever it wants. We use two components, fsl handler, which reads and stores
the vectors and data bu↵er, which is a state machine. At each state, we read the current
vectors and send it to the dynamic interface. Then, they are decoded and displayed on
the screen, as it is explained in the section below. The size of this part is given in the
table 1. We can see that lots of registers are used to store our vectors. Indeed, 23 words
* 32 bits = 736, which explains the number obtained.

More information regarding the FSL protocol can be found in appendix B.

2.3 The interface

The Tetris interface is created with blocks. For the whole interface, we use blocks of 9
di↵erent colours. Still, for the game, only 7 colours are required. In order to stay in the
mood of Tetris, everything is written with blocks. We use two di↵erent sizes in order
to be able to display everything. The top line of the title does not separate the letters.
It is a wink of the goal of the Tetris game, making lines. The flags are here to show to
the player that this project was realized by both Swedish and French students. At the
bottom right hand corner, the three letters are J L A for Jimmy, Linus and Antoine.
The information is displayed on the left of the screen in light colours to be seen in a
flash.

2.3.1 Dynamic interface

The dynamic interface is designed to display all of the information given by the software,
such as the scores, the number of lines, the current level, the pause sign and, last but
not least, the game. In order to achieve this goal, we use seven di↵erent components.
Indeed, this part must decode the vectors and display the squares at the right position.

2.3.2 Decoding the vectors

The FSL bus sends 23 words of 32 bits each. The twenty first words are used to display
the game. They are subdivided into ten vectors of three bits each. This way, we know

4

the position and the colour of the squares. An example is showed in figure 4.

Figure 4: Example of a line in the game

Once the vector is decoded, we still have to create the square. Indeed, in our interface,
all of the blocks are not made by creating a simple square. We made it with a 3D
perspective. In order to do that, we use three di↵erent colours for each blocks, as it
shows in figure 5.

Figure 5: Creation of a block

The component Choice colour is the keystone of this realisation. Indeed, it re-
turns the three useful colours when we ask for one block. Then we display the three
colours correctly using combinational logic. We choose the colours using one of our file,
test colour. This file display all of the colours available from the FPGA on the screen,
as it is shown in figure 6.

Figure 6: Colours available with the FPGA

Displaying the game area is quite easy because one vector represents one line of
blocks. Things become trickier when the vectors do not give the position. It is the case
for all of the other information. For instance, the score is coded in BCD (Binary Coded
Decimal). So we easily know the figure we need display but not the position. As the
position is fixed, we use another component, score controller which gives the y position
of the top of the square. This value is fixed during all of the time of one line of squares
is displayed and changes at the beginning of the second line. Thus, we have got a mark

5

and using this reference to display the three colours of the block, we do not have to write
the conditions for all of the lines, but only for one. Then, we create the blocks. Finally,
we choose which colour we want to display. Or the current colour, or black if there is no
block. An example is done in figure 7(a) and 7(b).

(a) Result given by score controller (b) Final result

Figure 7: Building the level text

The size of the dynamic interface is given in the table 1.

2.3.3 Static interface

The static interface uses the same principle as the dynamic interface to create and to
display the blocks. The di↵erence is that we know the position, the colour and what
we want to display. This interface displays the title, the flags, the signature and the
game edge. The size of the static interface is given in the table 1. If we compare it
with the size of the dynamic interface, we see that we use less slices and less registers.
Static interface deals only with three components against seven four the dynamic one.
Moreover, we do not need to store any vectors, we just use constants to display what we
want.

2.3.4 Multiplexer

Static and dynamic interface are linked using an OR gate. Indeed, we know that the
positions for the static and dynamic blocks are never the same. So we do not have any
conflict. Before sending the information to the screen, we have put a multiplexer. It is a
security, if something unexpected happens. This multiplexer allows to display data only
when the screen is ready for. During timings to come back at the beginning of a row or
at the beginning of the screen, the multiplexer output is forced at ’0’.

2.4 Music

In order to be as close as possible of the real Tetris game, we wanted to display the
music. This music is also implemented in hardware. The sound is created modulating
the frequency of the output signal. As we send digital signal or square signals, the
sound is near to the 8-bit music. We have subdivided the partition in three di↵erent
parts which are displayed in loop. Each part is a state machine and each state gives a
new number. This number is using in a counter, to be able to change the frequency of

6

Flavius Gruian
It is not very clear whether you use a memory to store the current
game status, or you need to send this continuously, for every VGA
frame… please explain.

the output signal. In order to change the state, we are waiting for a rising edge of an
external signal. This signal, created by the component Metronomia, depends of the level
value. We are thus able to increase the speed of the music when the level increases. The
figure 8 shows the architecture of the component Concert.

Figure 8: Architecture of the component Concert

2.5 Processor, memory and other components

We have used a MicroBlaze soft processor [6] to be able to run the software of our project.
The MicroBlaze is connected to a PLB bus together with the memory controllers and
other peripherals. We used a clock frequency of 50 MHz for the MicroBlaze.

For debugging purposes we also added a UART component. This was used to test
the game logic before we could use the VGA controller. We used a baud rate of 115200,
because it was then fast enough to print the complete game state to the serial console
on the computer. A screenshot of this can be seen in figure 9.

Figure 9: Tetris on the UART

2.6 Device utilisation

In the table 1, we see that our custom written parts (VGA controller and Concert) have
a high utilisation of the device (47.7 % of the occupied slices and 38.4 % of all slice
registers). This is because we store our words in registers. An improvement of that part
would be to store the words given by the soft part in an RAM of 92 octets and to store
the static interface in a ROM. The size of the ROM, keeping the same way to display the
square would be around 126 octets. The reason why we have not done it, is because at

7

Flavius Gruian
Nice solution using
the UART to get a first
prototype of the game.

Slices Slice registers

Component Count Percentage Count Percentage

VGA controller 1086 43.3 % 979 34.9 %
Counters 111 4.4 % 100 3.6 %
FSL handler 330 13.1 % 738 26.3 %
Dynamic interface 524 20.9 % 126 4.5 %
Static interface 121 4.8 % 15 0.5 %

Concert 100 4.0 % 98 3.5 %

MicroBlaze 732 29.3 % 812 29.0 %
Timer 146 5.8 % 301 10.7 %
Other components 437 17.5 % 614 21.9 %

Total 2501 100 % 2804 100 %

Table 1: Device utilisation

the beginning we thought about another way. We wanted to use specialized but reusable
component. For example, one component to create a square, one component to create a
zero, which would use the component square, one component to display all the figures
which would use the component zero, one, which use themselves the component square.
But, using this way, we saw that we used 600 % of the size. So we changed our mind.
With more time, we would use memories.

These numbers are collected from the Module Level Utilization report in XPS. How-
ever, when we instead look at the Design summary we see that the total utilisation is
1684 slices (73 %). This is significantly lower than the total of 2501 seen in table 1. We
believe this may because of optimizations done between di↵erent components, perhaps
there are slices that can be merged or shared. In that way the total number of slices
actually used may be lower than the sum of all required slices for each component.

3 Software

All software was written in C. A simplified flowchart describing the game logic can be
found in figure 10.

3.1 Timers

We have used two timers in our software. We have used the xps timer IP from Xilinx [2],
which gives us two timers in a single component. One timer polls the NES controller, and
the other moves the current block down. When a timer expires, it causes an interrupt
in the MicroBlaze. The interrupt handling is then done in two steps. First an interrupt
handler is called which clears and acknowledges the interrupt. This is a slightly adapted
version of the one that is included with xps timer IP component. This interrupt handler

8

Figure 10: Simplified flowchart of the software

9

then calls the interrupt handler which actually contains the tasks that should be done
in the interrupt.

The interrupt handler then executes the correct code. This makes the game com-
pletely interrupt driven, since the main() function is used only for initialization. The
code used for initialization of the interrupt controller (the first step above) can be
seen in the code listing below. We initialize the interrupt controller with a function
(custom XTmrCtr InterruptHandler) that checks which of the timers that expired, and
clears the interrupt bit etc.

/* Register the interrupt handler in the vector table */

// Initialize interrupt controller

XIntc_Initialize (& InterruptController , INTC_DEVICE_ID);

// Connect interrupt source to interrupt handler

// function and start controller

XIntc_Connect (& InterruptController , TMRCTR_INTERRUPT_ID ,
(XInterruptHandler)custom_XTmrCtr_InterruptHandler ,
(void*) &TimerCounterInst);

XIntc_Start (& InterruptController , XIN_REAL_MODE);

// Enable interrupt XPAR_XPS_INTC_0_DEVICE_ID

XIntc_Enable (& InterruptController , TMRCTR_INTERRUPT_ID);

// Register the interrupt controller handler with the exception table.

Xil_ExceptionInit ();

Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT ,
(Xil_ExceptionHandler)
INTC_HANDLER ,
&InterruptController);

// Enable non -critical exceptions.

Xil_ExceptionEnable ();

The second step of the interrupt is the initialization of the timers. At first we set
the ”real” interrupt handler that will actually execute our code for the gamepad polling
and game logic.

XTmrCtr_SetHandler (& TimerCounterInst , timer_isr , &TimerCounterInst);

We then set options on both timers such that they cause interrupts and so that they
repeat once they expire:

XTmrCtr_SetOptions (& TimerCounterInst , TIMER_CNTR_NES ,
XTC_INT_MODE_OPTION | XTC_AUTO_RELOAD_OPTION);

XTmrCtr_SetOptions (& TimerCounterInst , TIMER_CNTR_GAME ,
XTC_INT_MODE_OPTION | XTC_AUTO_RELOAD_OPTION);

We then continue by setting the reset value of both timers, determining the period time
of the interrupts.

XTmrCtr_SetResetValue (& TimerCounterInst , TIMER_CNTR_GAME ,
RESET_VALUE_GAME);

XTmrCtr_SetResetValue (& TimerCounterInst , TIMER_CNTR_NES ,
RESET_VALUE_NES);

10

TIMER CNTR GAME and TIMER CNTR NES are constants set to 0xFFECCCCC and 0xFD000000.
These were calculated by first measuring how many cycles we got each second, it turned
out to be T = 75497472. Since we wanted a frequency of 60 Hz for the polling of the
gamepad, we divided this number by 60 to get the period time TNES = 1258291. The
timers cause an interrupt when they wrap around, i.e. when they reach the value zero.
Thus, we must set the timer’s reset value to FFFFFFFF16�125829110 = FFECCCCC16.

Finally both timers are started with:

XTmrCtr_Start (& TimerCounterInst , TIMER_CNTR_GAME);
XTmrCtr_Start (& TimerCounterInst , TIMER_CNTR_NES);

3.2 Game logic

The game area is 20 rows times 10 columns. In the implementation we use a 22⇥12
unsigned char array for representing the game area, where the outermost elements
represents the border. The array is used for keeping track of which positions that are
occupied by blocks. The value 0 is used for representing an empty position and 1 � 8
are used for representing the colour of the square that occupies the position. We refer
to this array as the fixed game area, since the player can not move these blocks. We
use the same approach for keeping track of the next block, with a 2⇥4 unsigned char

array instead.
A vector of four point t elements is used for representing the movable block, or as

we call it the current block. point t is a struct which contains a x and y position and
the colour of the block.

We use another 22⇥12 unsigned char array to make it easier to write the data on the
FSL bus. This array is a copy of the fixed game area merged with the current block

and we refer to it as the combined game area.
We use some other variables for representing the game state; score, lines, game over

and paused. The levels are in the range 0� 10, you reach a new level for every tenth of
cleared line.

3.2.1 Moving the block

There are three di↵erent main options for moving a block:

• Move down

• Move sideways

• Rotate

When the block is moved sideways we only have to make sure that no collision will
occur, if it does not the current blocks x position is updated with the new position.

A block can be rotated in a clockwise or counterclockwise direction. Since some
of the shapes does not have a strict (an integer value) center of rotation, we have to
approximate a center of rotation. The center of rotation is rounded towards the down

11

right when the block is rotated in a clockwise direction, and towards down left for
counterclockwise rotations.

If a collision will occur when a block is moved down, the current block is merged
with the fixed game area, all full lines are cleared (see section 3.2.3 for more details), the
next block becomes the current block and a new next block is generated. Otherwise
the y position of the block is updated.

3.2.2 Collision detection

An element with a nonzero value represents an occupied position in the fixed game area.
When collision detection is performed the new desired position of current block is com-
pared with the fixed game area. A collision is detected if there is any occupied position
in fixed game area that overlaps with a desired position of current block.

When the game is initialized the outermost elements of the fixed game area are set
to the colour of the border and the rest of the elements are set to zero. This makes
collision detection much easier, since the border will be treated like any other block and
no custom collision detection is required.

3.2.3 Clear lines

When clearing lines, each line in fixed game area is checked from the bottom to top. If
a complete line is found, everything above that line is moved down one step and thereby
removes the line. The player get di↵erent scores, based on how many lines that were
cleared. The scoring is according to:

• 1 line will add 1 to score.

• 2 lines will add 2 to score.

• 3 lines will add 4 to score.

• 4 lines will add 8 to score.

Clear lines is always performed whenever a collision downwards occurs.

3.2.4 Communication with the hardware

All game data is sent on the FSL bus whenever the game changes its state. The data is
sent in words of 32-bits. For the complete game we use 23 words.

The first 20 words are the lines of the combined game area, where the most sig-
nificant bit (MSB), corresponds to the colour of the leftmost element. The next word
contains the score (in 4-bit BCD format), level and the current state of paused. The
succeeding word contains the colours of next block. The final word contains the number
of cleared lines. More details regarding the FSL data is shown in appendix B.

12

Flavius Gruian

Flavius Gruian

Flavius Gruian
OK!

3.2.5 Interrupt service routine

The interrupt service routine (ISR) is executed whenever one of the hardware timers
overflows (see section 3.1 for more details).

NES timer

When the NES timer interrupt is raised, the gamepad is polled. If no button is pushed
nothing happens, otherwise each button is handled according to figure 10.

If a button is held down, the same function will be executed again. Since the gamepad
is polled very frequently, a ”single push” were most times treated as a hold. To avoid
this problem we added a counter which counts for how many interrupts the same button
combination has been held. If a combination is held for a certain number of interrupts,
the same function will be executed once again.

Game timer

The current block is moved down (see section 3.2.1 for more details) whenever the
game timer interrupt is raised. The period time of the game timer is decreased when a
new level is reached, by increasing its reset value.

3.3 NES gamepad

As input device for the game, we have used a NES (Nintendo Entertainment System)
gamepad. A picture of the gamepad can be seen in figure 11. As can be seen on the
picture, the NES gamepad has eight buttons: up, down, left, right, start, select, A and
B.

3.3.1 The gamepad

This gamepad is a serial device, and needs to be polled for data. Reading the description
of the protocol from [3], we can make a timing diagram as in figure 12. The protocol
can be described like this:

1. Send a pulse on the Latch pin. This makes the gamepad store all buttons currently
pressed.

2. Read the state of the A button by reading the Data pin.

3. Send a pulse on the Pulse pin to make the next button available on Data.

4. Repeat until all buttons have been read.

13

Flavius Gruian
Could you have your own NES hw interface generate interrupts whenever a button is pushed instead of polling it on timer?

Figure 11: NES gamepad

Latch

Pulse

Data

A B Select Start

Up

Down Left

Right

Figure 12: Reading NES gamepad

14

3.3.2 Software

Since there is no need for a specific duration on either the latch or the pulse signal, it is
easy to implement the polling in software. We have used two xps gpio IPs from Xilinx
[4] to interface our gamepad. One component is used for input and the other for output.
The components are connected to the PLB bus, and can be accessed from C code by
using pre-written functions. The NES gamepad itself has been connected to one of the
boards PMod ports, PModA. By adding the following lines to our .ucf file, we could
connect the external pins to our GPIO components:

Net fpga_0_pmod_ja_1_o_pin <0> LOC = T12 | IOSTANDARD=LVCMOS33; # JA1
Net fpga_0_pmod_ja_1_o_pin <1> LOC = V12 | IOSTANDARD=LVCMOS33; # JA2
Net fpga_0_pmod_ja_3_i_pin LOC = N10 | IOSTANDARD=LVCMOS33; # JA3

The location of the pins were located in the Nexys 3 reference manual [5, p. 21].
To use the GPIO components from the code, we need to initialize them with the

following code:

XGpio_Initialize (& nes_output , XPAR_PMOD_JA_OUTPUT_DEVICE_ID);
XGpio_Initialize (&nes_input , XPAR_PMOD_JA_INPUT_DEVICE_ID);

/* Set data direction. */

XGpio_SetDataDirection (&nes_input , 1, 0xffffffff); /* All inputs. */

XGpio_SetDataDirection (& nes_output , 1, 0x0); /* All outputs. */

After this we can use the GPIO components simply by setting a value to 1, wait for
some time, and then setting the value back to zero again. For example, to write to the
Latch pin, we use the following code:

XGpio_DiscreteWrite (& nes_output , 1, 0x1); /* Write to latch */

for (delay = 0; delay < 30; delay ++); /* Wait. */

XGpio_DiscreteClear (& nes_output , 1, 0x1); /* Restore to zero. */

The empty for loop uses a variable declared as volatile int delay; to avoid compiler
optimizations and create a delay. Since the gamepad does not require the signal to be
high for a specific time, we have chosen 30 somewhat arbitrarily. However, we want this
to be a small number since this interrupt occurs 60 times per second. To read a bit from
the Data pin, we use the following line:

u8 temp = XGpio_DiscreteRead (&nes_input , 1) ^ 0x1;

This reads from the input GPIO component. The final XOR is because the Data is
active-low.

3.4 Memory usage

When creating our project in Xilinx Platform Studio, we chose to use 32 kB of BRAM.
In the Xilinx SDK we used the default values for stack and heap size, which is 1 kB for
each. Our final memory usage is printed in table 2. As can be seen from the table, we
use quite a lot of out available memory, 27.4 kB which is 86 % of the available memory.

15

text data bss stack heap total
21778 1428 2812 1024 1024 28066

Table 2: Memory usage for the software

Figure 13: Pinout of the NES gamepad

At the end of the project, as we added more and more code to the software, we got
issues with the memory usage. The compiler gave errors which said that it could not fit
text, data, bss, stack and heap in the memory at the same time.

Instead of increasing the available memory by using more BRAM, we changed the
compiler settings. By using the Optimize for size (-Os) flag, we could reduce the memory
required for the instructions such that everything fitted inside our memory.

4 Documentation

To test the project you need access to an archived file of our project, available on the
course web page (a link here would be appropriate). Furthermore, you need access to
a Digilent Nexys 3 board, a VGA compatible monitor, a NES gamepad and finally a
PModAMP1 if you want to hear the music.

First we need to connect all peripherals to the Nexys 3 board:

1. Connect the VGA monitor to the Nexys board with a VGA cable.

2. Connect the Nexys 3 board to the computer with a USB-cable for programming
the board.

3. Connect the NES gamepad to the PModA port as follows: Clock ! JA1, Latch
! JA2 and Data ! JA3. Also connect the Ground and VCC pins to appropriate
outputs on the board. See the pinout of the gamepad in figure 13.

4. Connect the PModAMP1 to the upper part of the PModB port.

When everything is connected the board must be programmed by opening the project
files in the tetris/ directory in Xilinx Platform Studio. The project is created with
version 14.2 of the software. Synthesize the project and start Xilinx SDK by pressing
the Export to SDK button. When Xilinx SDK starts, choose tetris/workspace/ as the
workspace folder. The final step is to press the Program FPGA button in to program
the board.

16

5 Problems and conclusions

As with all projects we had our fair share of problems. A constant source of annoyance
was the Xilinx tools, especially the time required for a full synthesize. Much of the
time spent on the project has been time waiting for XPS to synthesize the project.
The workflow was usually to make some minor change in the hardware, re-import and
reconnect the component in XPS and the make a synthesis of roughly ten minutes.

After some time we realized that we could get around this problem by using the ISE
Design tools instead, it works well when debugging for example graphical issues that is
static and does not require the software part. By using ISE we could reduce the time of
synthesis to a more reasonable time of around two minutes. However, when developing
the dynamic parts of the game, and testing the communication between hardware and
software, we found no other option than to use XPS.

As we described earlier in section 2.6 we had to redesign the way we drawed blocks
on the screen. With the initial design we had a utilisation of over 600 % for the VGA
controller alone.

The timers caused a great deal of trouble before we got them to work well. It was
very hard to find good documentation on how to use the timers with interrupts. After a
lot of hours with testing we finally managed to get the interrupts to fire and to run some
code in the interrupt routine. When we got this working solution we avoided touching
the interrupt handling code as much as possible.

After getting the timers to work we noticed some bugs that only occurred after
the program had been running for a while, and mostly when buttons were pressed on
the gamepad. It turned out to be a problem when the interrupt handler was running
while another interrupt occurred. When this happened, the first interrupt was never
acknowledged, and when the first interrupt routine finished, no more interrupts could
be handled. This problem was fixed by always clearing the interrupt bit for the timer
with the highest frequency, i.e. the gamepad polling timer.

If we would have made the project again, we would have changed the interrupt
routine such that it only sets flags. These flags would then be checked by a infinite loop
in the main() function. That way we do not get the problem with an interrupt routine
that takes a long time to execute.

6 Lessons learned

We have learnt a lot during this project. We have gained more experience with the
di↵erent Xilinx tools. One example is that ISE Design tools can be used for only synthe-
sizing our custom hardware parts, which saved us a lot of time when debugging them.
We have also learnt how to implement and import custom IPs.

A lot of problems can be avoided by discussing problems and solutions, both within
the team and outside it. Development becomes easier with proper documentation. It
is both easier and faster to develop and debug software than hardware. Debugging a
system of both hardware and software is very hard. We have experienced the importance

17

Flavius Gruian

Flavius Gruian
yes, good conclusion

of dividing problems into smaller parts when debugging them.

7 Contributions

For this project, the work has been subdivided into three parts since the beginning. This
way, we worked in parallel and we gained in e�ciency. Antoine worked on the hardware
part. He designed the interface and implemented it in hardware. The software has been
coded by both Linus and Jimmy. Jimmy worked on the game logic. Linus worked on
the NES Gamepad controller. They implemented together the FSL bus protocol. Linus
created the components in the platform and linked them on the board in order to make
tests. The music and the FSL hardware part were designed by the three of us.

All of the reports and the presentation were made, or prepared, by all of the group.
Everyone were specialized on the part he worked on.

• Antoine has written sections: 2, 7, A.

• Jimmy has written sections: 3.2, 6, B.

• Linus has written sections: 1, 3.1, 3.3-3.4, 4, 5.

References

[1] Digilent, NexysTM3 Spartan-6 FPGA Board http://www.digilentinc.com/

Products/Detail.cfm?NavPath=2,400,897&Prod=NEXYS3

[2] Xilinx, LogiCORE IP XPS Timer/Counter (v1.02a), http://www.xilinx.com/

support/documentation/ip_documentation/xps_timer.pdf

[3] The NES Controller Handler, http://www.mit.edu/~tarvizo/nes-controller.

html

[4] XPS General Purpose Input/Output (GPIO) (v2.00a) http://www.xilinx.com/

support/documentation/ip_documentation/xps_gpio.pdf

[5] Digilent, Nexys3TMBoard Reference Manual, revision: December 28, 2011 http:

//www.digilentinc.com/Data/Products/NEXYS3/Nexys3_rm.pdf

[6] Xilinx, MicroBlaze Soft Processor, http://www.xilinx.com/tools/microblaze.

htm

[7] Flavius Gruian. GCD: Hw - A Hardware Solution
(laboratory session 4, eda380). http://fileadmin.cs.lth.se/cs/Education/

EDAN15/labs/lab4/EDA380Lab4.pdf, March 4 2009. Accessed October 25, 2012.

18

A Evolution of the project

During the project, we made some photos to see the evolution of the project. The first
results was the VGA controller showing a static image, and the software printing to the
UART, as can be seen in figure 14(a) and 14(b).

(a) Static test image (b) Tetris UART-style

Figure 14: First stage of the project

As we can see in the game area, we use di↵erent symbols to di↵erentiate the block
types. Later, each symbol will be switched into a color. After those first results, we chose
the three di↵erent colors for each block and linked the hardware with the software. We
also improved the logic of the game and implemented the gamepad handler. This gave
us some new results as can be seen in figure 15(a) and 15(b).

At the end, we added the interface, finished the game logic, implemented the music,
added levels and a pause sign. The final result can be seen in figure 16.

B FSL protocol

The arrangement of the data sent on the FSL bus is shown in figure 17. The FSL handler
reads the data according to the timing diagram in figure 18.

19

(a) Colours available on the FPGA (b) Dynamic blocks

Figure 15: Second stage of the project

Figure 16: Final version of the game

20

Figure 17: Data sent on the FSL bus

Clk

Bu↵er

D22/D21

D22

Read ack

Data in

D21 D22

Exists

Figure 18: Reading FSL data. Once Data in is read, Read ack must be driven high
for one clock cycle. This informs the bu↵er that the data has been read, causing new
data to be shift in on the next rising edge. This may occur only if Exists is high. Note
that reading data requires at least two clock cycles - one to store and acknowledge the
read and one to allow the bu↵er to fetch new data.[7]

21

Flavius Gruian
Overall very good report, with enough level of detail and well written!

