
FPGA Tank Game
(EDA385 project report)

Shuai Cheng, soc11sch@student.lu.se
Longyang Lin, soc11lli@student.lu.se
Yuhang Sun, soc11ysu@student.lu.se

October 26, 2012

Contents

1 Introduction 2

2 Specifications 2

3 Hardware 3
3.1 Graphic accelerator . 3

3.1.1 Background renderer . 4
3.1.2 Foreground renderer . 5

3.2 USB keyboard and timer peripheral . 6
3.3 PLB interface . 7

4 Software 7
4.1 Interrupt routine . 11
4.2 Background settings . 11
4.3 Player control and update . 12
4.4 Enemy control and update . 13
4.5 Collision . 13

5 Implementation Problems 14
5.1 Software debug . 14
5.2 Interrupt system . 14
5.3 Picture drawing . 15
5.4 Hardware limitation . 15

6 Conclusions and Discussions 15
6.1 Device occupancy . 16
6.2 Memory usage . 16
6.3 Possible improvements . 16

7 Lessons Learned 17

8 Contributions 18

1

1 Introduction

This report presents a system that allows you to play a tank game on VGA monitor
with keyboard control. The system is developed in Digilent Nexys3 FPGA board with
Xilinx platform studio 14.2 and Xilinx software development kits.

The idea of the game is to let the player control a tank to protect the base and
destroy the enemy tanks which is controlled by computer and they will try to attack the
player’s tank and base. The player can move the player tank left, right, up and down in
the screen by pressing the related key on the keyboard. The player can also press one
key to make the player tank fire to destroy the enemy tanks. If the player tank or base
is hit by the enemy bullet, the player lose and the game will restart again from level 1.
There are di↵erent topographic of background and they will have di↵erent e↵ects when
hit by the tanks and bullets.

The design is built with a single processor PLB base system usingXilinxMicroBlaze
and automatically generated by Xilinx platform studio. In order to reduce memory
usage and achieve the real time display, a graphical accelerator is designed and imple-
mented. All the graphics used in this game are built by blocks of 32x32 pixels. The
background and objects are built up by grouping these blocks together in di↵erent ways.
The MicroBlaze is responsible of calculating the screen position of these blocks and the
graphics accelerator does the actual drawing to the screen.

This report is organized as follows: Section 2 gives specification of this project. In
section 3 the FPGA hardware is detailed. Section 4 presents how the MicroBlaze
software is implemented. The problems and their solutions during the implementation
are shown in section 5. Conclusions and discussions are given in section 6. Section 7
and section 8 list the lessons learned and contributions of the team members.

2 Specifications

The project should be able to run in the following conditions:

• Hardware platform: Digilent Nexys3 Spartan-6 FPGA Board

• Keyboard control and VGA monitor display

• Screen resolution is 640x480 pixels at 60 Hz

• Update the player tank position and fire bullets by pressing the keys

• Update the enemy tank position and fire bullets by software AI

• Detect and handle collision between player and topographic, enemy and topo-
graphic, player and enemy, bullet and topographic, bullet and player, bullet and
enemy

2

BRAM

MicroBlaze

USB keyboard

USB controller Graphic
accerator

Timer

MonitorMonitor

Figure 1: The overall hardware architecture of the design

3 Hardware

The overall architecture of this design is shown in figure 1. The design is based on the
single processor PLB system generated by Xilinx platform studio 14.2 where the timer
and graphic accelerator are designed and implemented by ourselves. The software codes
are stored in BRAM and run by the MicroBlaze. All the peripherals are connected
to MicroBlaze via PLB bus. Section 3.1 describes the detail implementation of the
graphic accelerator. The USB keyboard and timer peripheral are presented in section 8.
In addition, the PLB interface between graphic accelerator and MicroBlaze is given.
The overall hardware testing is carried out by Xilinx ISE project navigator.

3.1 Graphic accelerator

The main task of the graphic accelerator is to decide which color to be displayed on
the screen based on the Background RAM and Object RAM. Hence the MicroBlaze can
update the Background RAM and Object RAM via PLB bus to control what to be
displayed on the monitor. The graphic accelerator mainly consists of three parts, which
are Background Renderer, Foreground Renderer and VGA controller as shown in figure
2.

Base on the requirement[1], the VGA controller generates horizontal sync signal hs,
vertical sync signal vs and blanking signal blank for the VGA monitor using 25 MHz
pixel clock. In addition, the VGA controller also gives two signals Hcount and V count
to indicate the current pixel. The Background renderer outputs the RGB value of
background at the current pixel where the Foreground renderer outputs the RGB value
of foreground objects at the current pixel. Moreover, there is a multiplexer to choose
which RGB value to output. If the RGB value of foreground object is 255, which means
that the color is white(we use white as background for the foreground object picture),
the multiplexer will select the RGB value of background to achieve transparent display
between foreground object and background. The detail implementation of background

3

Flavius Gruian
The system overview should maybe show that you are using the PLB bus for the peripherals.

Foreground
Renderer

OjectRAM
Wr data

OjectRAM
Wr addr

Hcount

Vcount

OjectRAM
We

RGB

Background
Renderer

BgRAM
Wr data

BgRAM
Wr addr

Hcount

Vcount

BgRAM
We

RGB 1

0

=255? VGA
controller

Hcount

Vcount

Hs

Vs

Blank

Clk_25M Rst

Clk_25M Rst

Hcount

Vcount

Vcount

Hcount
Hcount

Vcount

Blank

1

0

0

Blank

Clk_25M

Rst

Clk

RGB

Hs

Vs

Graphic Accelerator

OjectRAM
Wr data

OjectRAM
Wr addr

OjectRAM
We

BgRAM
Wr data

BgRAM
Wr addr
BgRAM

We

Figure 2: The block diagram of graphic accelerator

renderer and foreground renderer are described in the following section 3.1.1 and 3.1.2,
respectively.

3.1.1 Background renderer

The overall block diagram of background renderer is shown in figure 3. 640x480 pixels
can be divided by 20x15 tiles and each tile contains 32x32 pixels. The background RAM
only stores the bitmap indexes of each tile, where the bitmap ROM only stores the
color indexes of each pixel. By applying this addressing feature, the total hardware cost
can be reduced dramatically. Figure 4 shows the words stored in di↵erent memories.
There are 3 types of background tile in this game resulting in only 2 bits in each word
of background RAM. Since the background RAM contains 300(20x15) words, the read
address for the current pixel can be calculated by

bgram rd addr = Hcount[10 :: 5] + V count[10 :: 5] ⇤ 20 (1)

4

Background
RAM

&
Vcount[4::0]]

&
Hcount[4::0]]

Hcount[10::5] + Vcount[10::5] X 20

 Rd addr

Wr addr

We

Wr data

Rd data
Bitmap
ROM 0

 Rd
addr

Rd
data Color

ROM 0
 Rd
addr

Rd
data

Hcount
Vcount

Background Renderer

Figure 3: The block diagram of background renderer

07
RGB

06
Color index

Color ROM

Bitmap ROM
0

Bitmap#
1

Background RAM

Figure 4: Words in the di↵erent memory of background renderer

where the Hcount and V count are given by the VGA controller as describes in the
previous section. The read address of bitmap ROM for each pixel is generated by

bitmap rd addr = bgram rd data ⇤ 1024 + (V count%32) ⇤ 32 +Hcount%32 (2)

which can be done in a very smart way without any calculation as show in figure 3.

3.1.2 Foreground renderer

Figure 5 shows the block diagram of foreground renderer. The idea of the foreground is
to store the color index for a row(640 pixels) using a row bu↵er. In order to speed up
and catch the timing, there are two identical row bu↵ers, one used for odd row and the
other used for even row making sure that one is under read if the other is under write.
The row bu↵er only stores the color indexes of each pixel in each word while the object
RAM stores the bitmap indexes, and its x-coordinate and y-coordinate of the left upper

5

Flavius Gruian

Object
RAM Rd

addr

Wr addr

We

Wr data

Rd
 data

Bitmap
ROM 1

State Machine
(Row writer) Wr addr

We

Wr data
OjectRAM
Rd data

OjectRAM
Rd addr

BitmapROM
Rd data

BitmapROM
Rd addr Hcount Vcount

Row
Buffer 0

 Rd addr

We
Rd

data

Row
Buffer 1

 Rd addr

Wr
addr

We

Wr
data

0
0

1

Vcount[0]

Hcount

Hcount

Hcount Vcount

Rd
 data

 Rd
addr

Rd
data

Wr
data

Wr
addr

Color
ROM 1

 Rd
addr

Rd
data

0

1

Vcount[0]

Foreground Renderer

Hcount

Vcount

0

1
0

Figure 5: The block diagram of foreground renderer

conner in each word as shown in figure 6. The object RAM contains 128 words which
means that it supports up to 128 objects(32x32 pixels each) showing in the screen.

There is a state machine to decide what to store in the row bu↵er according to the
information of object RAM. Figure 7 shows the ASMD chart of this state machine. The
state machine is waiting on the state idle and will jump to state row reset when the
signal vcount is in the visible area. The state row reset is used for clearing all the values
in the row bu↵er to make sure that the pixel displayed in this row is not mixed up with
the previous values. After row reset, the state machine will move to state s1 to decide
whether the current object in the object RAM needs to be displayed on this row. If the
current object should not be shown in the current row, then the next object coordinates
are read and repeats the steps in state s1 until all the 128 objects have been read. If the
current object should be presented in this row, the state machine will jump to state s2
to write 32 values in the row bu↵er. state s1 and s3 are just used for compensating the
delay when reading value from memories. The address calculation of the bitmap ROM
is similar to the one of background renderer as shown in the default value part of the
ASMD chart.

3.2 USB keyboard and timer peripheral

The keyboard will generate an interrupt signal when it has been pressed. The port
of keyboard is USB but the protocol is PS2 actually. The timer is implemented by
two registers: the first one is called delay register which store the delay period and the
other called control register which for starting, stopping and checking if the timer has

6

Flavius Gruian
Good informative schematics, and text description. The VGA controller overall seems to be complex and well thought out.

Flavius Gruian
Does that mean that you have a 128 (or more) latency until you can decide which object to display? How do you solve the issue of displaying the object at the right location?

Flavius Gruian

04
Bitmap#

513
yx

1423

Object RAM
06

Color index

Row buffer

Figure 6: Words in the di↵erent memory of foreground renderer(words in bitmap ROM
and color ROM are the same as the ones in background renderer)

expired. The delay register can be set by the software application to determine how long
of a delay it requires. This value will remain in the delay register unchanged until the
software application need to change it for some reason it needs to. The control register
will only use the first two bits, being bit 0 and bit 1. Bit 0 is read-only and used by
the timer peripheral to inform the software application that the timer has expired. Bit
1 is readable and writeable, and it will be used by the software application to make the
timer run. When a ”1” is written to this bit, the timer will start counting down from the
delay value. When a ”0” is written to this bit, the timer will reset. The timer peripheral
architecture is shown in Figure 8.

3.3 PLB interface

The communication between MicroBlaze and graphic accelerator is based on PLB [2].
The graphic accelerator connects to a PLB slave and the PLB slave can receive the data
from PLB and providing the address decoding. It should not connect to a PLB master
because the graphic accelerator only accepts the write data for the background RAM
and the object RAM and it does not send any data to the MicroBlaze. Figure 9 shows
the connection and address mapping between PLB and graphic accelerator. Notice that
the bit 13 to 31 are not used in the register 0 of the PLB slave and it can provide a
further extension if the graphic accelerator needs more bits to communicate.

4 Software

The software is written in C, which is mainly responsible for the game logic such as the
player drawing, the enemy drawing, the collision handling, updating the corresponding
information in the object RAM and background RAM. Figure 10 shows the flow chart of
the game logic. The interrupt routine of the keyboard and timer are described in section
4.1. Section 4.3 and section 4.4 presents how the player tank, enemy tanks, bullets are
controlled and updated. Section 4.2 gives how the topographic of background is drew.
Finally, collision detection and handle is given in section 4.5.

7

Hcount=>DD and
Vcount_plus_E<L6/

 row_we=DS vcount_plus_E=vcountOE
 rowbuffer_write_addr = objectRAM_rd_data[FUWWEL]Opixel_count_x
 rowbuffer_write_data = bitmapROM_rd_data
 pixel_count_y=vcount_plus_E-objectRAM_rd_data[EUWWT]
 bitmapROM_rd_addr=objectRAM_rd_data[LWWD]3pixel_count_y[LWWD]3pixel_count_x
 objectRAM_rd_addr=objectnr DEFAULT VALUE

F

IDLE

reset_count=IU/

row_we=E
reset_count�reset_countOE
rowbuffer_write_addr�reset_count
rowbuffer_write_data�D

T

pixel_count_yOE>D and
pixel_count_y<UF and
objectRAM_rd_data[LWWD]&=D

pixel_count_x�pixel_count_xOE

objectnr = EF6objectnr�D

ROW_RESET

objectnr�objectnrOE

T

SD

SE

T

F
F

row_we=E
pixel_count_x�pixel_count_xOE

pixel_count_x=UF pixel_count_x�D
T

F

objectnr = EF6
objectnr�objectnrOE
row_we=E

F

SU

SF

T

Figure 7: The ASMD chart of the state machine in foreground renderer

8

Re
gis

ter
 0

Re
gis

ter
 1

Microblaze OPB OPB
Handler

A
dd

re
ss

 D
ec

od
er

Write Data

Write Data

Delay

Control

Reg 0

Reg 1

Read Data

Read Data (bits 1 to 31)

Ti
m

er

Read Data (bit 0) timer expired

Figure 8: the timer peripheral

Graphic
accelerator

BgRAM
Wr data

BgRAM
Wr addr

BgRAM
We

OjectRAM
Wr data

OjectRAM
Wr addr

OjectRAM
We

Re
gis

ter
 0

Re
gis

ter
 1

Microblaze

Write Data

Write Data

023243031

WE Object RAM wr addr Object RAM wr data

Register 0

Register 1

01
BG RAM wr data

211
BG RAM wr addrWE

121331
Unused

P
LB

 S
LA

V
E

S
 v

4.
6

P
ro

ce
ss

or
 L

oc
al

 B
us

 v
4.

6

MPLB

SPLB

Figure 9: PLB connection and the address mapping with graphic accelerator

9

Flavius Gruian
So you implemented your own timer? Why? (Note: OPB is not supported anymore. Maybe you mean PLB)

initial player
 enemy
 bullet

 initial
background

 initial
object ram

initial
interrupt

initialization

enemy_life[N] = 0?

Move enemy

Tank collision11
 Move valid

player_life = 0?

enemy1player
 bullet life=0?

 Move bullet

test player bullet
 hit state

test enemy bullet
 hit state

outspace iron nothing eagle brick half brick

hit enemy ? hit player ?
player bullet enemy bullet

enemy bullet
hit enemy ?

update map

interrupt routine

bullet_life = 0 bullet_life = 0game over

enemy_life = 0 player_life = 0
player bullet_life = 0 enemy bullet_life = 0

bullet_life
= 0

enemy

Y

player_explosin_count ++

enemy_explosin_count ++

bullet_hit = 1 ?

frame count ++

change direction
 or shooting

Move player

Tank collision11
 Move valid

Keyboard

Timer

Y

N

Y

NN

Y

N

Y

N keep old position

N

Y

initial player
player_life_count -1

Y
player_life_count = 3 ?

N

game logic

Figure 10: The flow chart of the game logic

10

Flavius Gruian
Again, informative diagrams - well done.

4.1 Interrupt routine

This part will describe how to initialize interrupt in software before the main loop start
running. The interrupt handler functions are also described.

The software will process the interrupt through an interrupt handler function which
gets called whenever timer expires or keyboard has been pressed.

First of all, the ps2 driver should be initialize as shown in listing 1.

ConfigPtr = XPs2_LookupConfig(Ps2DeviceId);
XPs2_CfgInitialize(Ps2InstPtr , ConfigPtr , ConfigPtr >BaseAddress);

Listing 1: Ps2 driver initialization

Then initialize the interrupt controller and register the interrupt handler function of
keyboard and timer as shown in listing 2.

XIntc_Initialize(IntcInstPtr , INTC_DEVICE_ID);
XIntc_Connect(IntcInstPtr ,IntrId ,(XInterruptHandler)XPs2_IntrHandler ,Ps2Ptr);

Listing 2: Interrupt register

Next start the interrupt controller. Specify real mode so that the PS/2 device can
cause interrupts through the interrupt controller. The data received interrupts and the
global interrupt in the PS/2 device are enabled as shown in listing 3. The timer interrupt

XIntc_Start(IntcInstPtr , XIN_REAL_MODE);
XIntc_Enable(IntcInstPtr , IntrId);
XPs2_IntrEnable (&Ps2Inst , XPS2_IPIXR_RX_FULL);
XPs2_IntrGlobalEnable (& Ps2Inst);

Listing 3: Interrupt enable and start

setup steps are di↵er from keyboard since the timer is custom-defined. First, register
the interrupt handler as shown in listing 4.

Following that, interrupt handler of interrupt controller itself must be enabled. Timer
and macroblaze interrupt will be start after that as shown in listing 5.

4.2 Background settings

The background consists of two layers. Both layers are updated row by row. The furthest
layer shows the ground. The top layer shows the objects such as the bricks, irons, enemy
tanks, etc.

The VGA is 640*480 pixels and the tile map is 32*32 pixels. Hence a static u8
map [15][20] is defined to express each tile map in background. The static u8 map
[15][20] consist of three types: 0 for the ground, 1 for the bricks, 2 for the irons and
3 for the eagle. The game has two levels. After initialize the background during the

11

XIntc_RegisterHandler(XPAR_XPS_INTC_0_BASEADDR ,
XPAR_XPS_INTC_0_MY_TIMER_0_IP2INTC_IRPT_INTR ,
MY_TIMER_Intr_Handler ,(void *) XPAR_MY_TIMER_0_BASEADDR);

Listing 4: Timer interrupt register

XIntc_MasterEnable(XPAR_XPS_INTC_0_BASEADDR);

XIntc_EnableIntr(XPAR_XPS_INTC_0_BASEADDR , (XPAR_MY_TIMER_0_IP2INTC_IRPT_MASK |
XPAR_PS2_MOUSE_KEYBOARD_IP2INTC_IRPT_1_MASK));

MY_TIMER_mWriteReg(baseaddr , MY_TIMER_INTR_IPIER_OFFSET ,
0x00000001);

MY_TIMER_mWriteReg(baseaddr , MY_TIMER_INTR_DIER_OFFSET ,
INTR_TERR_MASK | INTR_DPTO_MASK | INTR_IPIR_MASK);

MY_TIMER_mWriteReg(baseaddr , MY_TIMER_INTR_DGIER_OFFSET ,
INTR_GIE_MASK);

microblaze_enable_interrupts ();

Listing 5: Interrupt enable

game logic, the value in map[15][20] will be sent to the background RAM for the graphic
accelerator to display on the VGA monitor. So if any value in map[15][20] is changed,
it will immediately update in the background RAM.

4.3 Player control and update

In every frame, the interrupt will detect the keyboard input to control the player tanks
movement, shooting or stand by, then update the its parameters. The player tank is
defined by a structure including the coordinate, direction, life, etc. For each direction
of the player, there is a corresponding picture, same as the enemy tanks. Once the
movement key of the player tank is pressed, the updated player tank’s coordinate needs
to pass the ”valid movement test” function before the updated value to be written into
the object RAM. Figure 11 shows how this function works. When the tank moves
towards di↵erent direction, the corresponding corner’s coordinates will be tested with
the value of map[15][20] to check whether there is an obstacle. If yes, the player tank’s
coordinate will not update during this movement.

After updating the player tank’s parameters during the game logic, the corresponding
changes will send to the object RAM hence the graphic accelerator can update the player
tank on the VGA monitor. The maximum bullets number of the player tank can exist
at one time are three. The player tank has 3 lives. Once the player tank is hit by the
enemies’ bullets, it will be initialize again, which means that it will lost 1 life and be
back to the left bottom position in the screen. If the player tank lost 3 lives, the game

12

(nx,ny)32

32

32

32

32

32

32

32

Figure 11: Valid movement testing scheme

logic will be initialize and restart.

4.4 Enemy control and update

There are four enemy tanks, which are born at the top of the map. Here a counter is
used for counting by a timer in hardware, to update the objects information in every 33
ms so that the enemy tanks will move one step in each frame. The step size of the enemy
tank is the same of player tank, which is 16 pixels. Once the collision with topographic
is detected during enemy movement by using the same function as player tank, the
”ENEMY AI” function is called, which will keep its old coordinate value and randomly
generate an integer between 1 to 4 for a new direction choosing. All the enemies have
been set to shoot in every ten seconds and they only have 1 life which means that they
will disappeared when hit by the player tanks bullet. But if they shoot each other, the
bullets will just disappear and do not a↵ect any thing.

4.5 Collision

In this game, the collision has five types:

• The collision between player tank and enemy tanks

• The collision between enemy tanks and enemy tanks

• The collision between bullets and player tank

• The collision between bullets and enemy tanks

• The collision between bullets and topographic

Figure 12 shows how the collision is detected for moving towards di↵erent direction
of player tank. For both player tank, enemy tanks and bullets, only the left top conner
of the coordinates(p nx, p ny for player tank, e nx, e ny for enemy tank as shown in
figure) are stored in their structures. Hence, if the condition

p nx <= (e nx+32) and (p nx+32) >= e nx and (p ny+32) >= e ny and p ny <= (e ny+32)
(3)

13

(e_nx,e_ny)

(p_nx,p_ny)

enemy tank

player tank

player move direction32

32
32

32

Figure 12: Collision detection scheme

is fulfilled, the player tank(p nx, p ny) has collision with enemy tank(e nx, e ny). The
same detection is used for the other collisions. If the bullets detect the collision, there is
an explosion animation displaying which is handle by displaying 3 pictures continuously
with the help of timer. If a bullet hits a brick, the corresponding brick will disappear
half and the brick will totally disappear if it gets one more hit.

5 Implementation Problems

5.1 Software debug

The command ”xil print” was used as the main way for debugging, but it is not always
working in this project. This command sometimes will make the program crash and we
didn’t realize that at the beginning. So we must be careful when using this command
and have a sense that this command sometimes will create problem.

The speed of the bullet and the tank moves extremely fast at the beginning because
it moves one step in every frame. To solve this we added a counter. When the counter
counts to 4000 frames, the tanks and the bullets will move one step.

5.2 Interrupt system

As described before, the interrupt system include two types of interrupts: timer and
keyboard. The keyboard use Usb port but follow PS2 protocol actually which is ex-
plained very clear in the document [1]. The document about how to setup XPS timer
as interrupt is not very clear and the example is very less. So the timer interrupt in
this project is done by two simple register. This idea is strongly inspired by [3]. The

14

Flavius Gruian
Good figure!

Flavius Gruian
Not all the formats are supported by xil_printf.

interrupt initial function is also changed a bit in new version of EDK software 14.1. The
function names for the drivers have changed to remove all instances of m from the driver
name, but the parameters for the drivers have all remained the same. For example, the
function XIntcmMasterEnable has been renamed to XIntcMasterEnable and all of
the parameters are identical between the two functions.

5.3 Picture drawing

The pictures are drew using 8 bits each for red, green and blue color(in total 24 bits).
Since the FPGA VGA port is only support 8 bits color(3 bits each for red and green, 2
bits for blue), the picture needs to be transform in 8 bits color. In order to get the best
transformation for keeping the original style of the picture, MatLab is used for solving
this problem. First the pictures are converted into ”true color image” format, which the
color value is during 0 to 1 each for red, green and blue. Then we let this red and green
color value multiply by 3 and blue color value multiply by 2. After that all these three
values are round to an integer. These steps can be easily done in MatLab and finally we
get the color transformation from 24 bits to 8 bits done. Then the pictures are converted
into ”index image” format for separate the color index and color value and written in
bitmap ROM and color ROM respectively.

5.4 Hardware limitation

Hardware limitation is a big issue for most of the projects in this course since most of
the projects are games and games are memory intensive project. Of course it is also
a serious problem for our project. In the beginning, the 16 KB BRAM is used for
MicroBlaze and all the memories used in graphic accelerator are block memories. As
the software size increasing when adding more game logic, the software codes cannot fit
in the 16 KB BRAM and we have to use 32 KB BRAM. When using the 32 KB BRAM
for MicroBlaze, the design was too large to map in FPGA board. Then we tried several
ways to decrease the hardware size and each trying of course needs to re-synthesis the
hardware which waste a lot of time. Finally, we decided to use distribute memories
instead of block memories for the graphic accelerator for saving block rams since the
distribute memories are using logic slices to build the memory logic. We suggest that
the Xilinx tool should estimate the hardware resource faster instead of finding the space
problem during exactly mapping after half an hour.

6 Conclusions and Discussions

The design works as expected and has been demonstrated in the lecture. Due to the
limitation of time, this is only the basic version of the game and we think that the
game can be more and more fun if adding more features. The detail suggestions for the
further possible improvements are described in section 6.3, where the device occupancy
and memory usage of the software codes are presented in section 6.1 and 6.2 respectively.

15

Flavius Gruian

Flavius Gruian
Ingenious solution, and nice idea.

Resources Used Utilization(%)
Occupied Slices 2,155 out of 2,278 94
Slice LUTs 6,035 out of 9,112 66
Bonded IOBs 136 out of 232 58
RAM16BWERs 32 out of 32 100
BUFG/BUFGMUXs 4 out of 16 25
ILOGIC2/ISERDES2s 30 out of 248 12
BSCANs 1 out of 4 25

Table 1: Device utilization

.Text(Bytes) .Data(Bytes) .BSS(Bytes) DEC(Bytes) HEX(Bytes)
25594 1396 3094 30084 7584

Table 2: Memory usage of software codes

6.1 Device occupancy

The synthesis report shows that the maximum clock frequency is 143.529 MHz. The
device utilization of the FPGA board is shown in table 1.

6.2 Memory usage

The memory usage of the software codes is shown in table 2. The ”.text” represents
code command where the ”.data” represents the initialized static and global variables
and the ”.bss” represents uninitialized or zero initialized static and global variables.
The software optimization level is set to ”�Os(Optimize for size)”. Consequently, the
BRAM using in the MicroBlaze should be 32 KB to be able to run this game.

6.3 Possible improvements

Software: The software part is mainly about the game logic. The first suggestion of
course is to have more topographic of background such as forest, ice, buildings and so
on as well as adding the corresponding e↵ect for these new topographic. In addition, we
can add more types of enemy tanks and give di↵erent ability for them such as di↵erent
size, di↵erent lives, di↵erent bullets, di↵erent AI for increasing the di�culty of the game.
It is also awesome to create some bosses for di↵erent level and increase the level number.
It is better to develop a way to automatically generate background map and enemy for
saving memory resource. Moreover, a game menu and animation of winning and losing
are needed for a better user experience.

Hardware: The graphic accelerator can be improved to have more layers for sup-
porting more transparent display. When using the distribute memory instead of block

16

memory, it is possible to make a better state machine since the distribute memory does
not have output delay for reading while block memory has at least one clock cycle delay
for reading.

7 Lessons Learned

Shuai Cheng: I have experienced and learnt a lot through this project. First of all,
I realized that it is extremely important to choose a project topic that I am really
interested in. This interest motivated me to work diligently throughout the project
despite all the challenges encountered. Moreover, this interest encouraged me to think
out of box. We felt heartily the sense of accomplishment when we finished the project.

Following that, communication among group members is essential. Regular meeting
is a good way to keep track on our progress and make sure the we follow the project
time line properly. Our regular discussions have fostered the team spirit and inspired
more ideas.

Last but not least, I have learnt that we need to find a good way to debug the
designed system. In our case, we used Chipscope to debug the PLB communication
between microblaze and hardware. It is useful but time consuming since we have to
assign the output port for the signal to be observed. Every time we did this, we have to
do the synthesis hardware all over again.

Longyang Lin: From this project, I have learned many things. First of all, planning.
Planning is one of the most important things for a project as well as following the
schedule. In our case is that we do the things slowly at the beginning and realize that
the project is not small after several weeks, which makes that we work for the more than
18 hours per day in the last week. That is a true story if you ask the clean sta↵s of our
university and they met us at the early morning since we stayed at the lab for whole
night. If we do a better planning in the beginning, I think that we do not have to work
such hard at the end and it is a very good lesson for me to understand that.

It is very fun to develop a game. You will find a lot of bugs when you are testing
and most of these bugs will let you laugh. In our project, most of the time have been
spent on hardware and software debugging. There are always some small details that
make you crazy and have to spend several hours to solve. Hence I also improved my
skills of debugging in VHDL and C. All in all, this is a wonderful project that creating
a fun game and improving my practical ability.

Yuhang Sun: From this project, it makes following the schedule is the most im-
portant. We spent much time at the last week. We just finish the project before the
deadline. If we have more time, we can add more advanced application into the project,
which will makes better. It is an e�cient way to separate the works at the beginning,
which improves my C programming skills. Through this project, I can use the C language
and the Xilinx expertly. Debugging is important, and it will takes much time.

17

8 Contributions

Shuai Cheng:

• Project report: writing or contributing to sections 3.2, 4, 5.2, 7, 8

• Keyboard and timer peripheral: research, development, debugging and testing

• Software and hardware interface : research, development, debugging and testing

• Game logic: research and testing

Longyang Lin:

• Project report: writing or contributing to sections 1, 2, 3.1, 3.3, 4, 5.1, 5.3, 5.4, 6,
7, 8 and appendix A

• Graphic accelerator: research development, debugging and testing

• Game graphics : research, drawing and transforming all the pictures

• Game logic: debugging and testing

Yuhang Sun:

• Project report: writing or contributing to sections 4, 5.1, 7, 8

• Game logic: research, development, debugging and testing

References

[1] Nexys3 Board Reference Manual,
http : //www.digilentinc.com/Data/Products/NEXY S3/Nexys3 rm.pdf

[2] LogiCORE IP Processor Local Bus(PLB) v4.6 (v1.05a),
http : //www.xilinx.com/support/documentation/ip documentation/plb v46.pdf

[3] timer and interrupt,
http : //www.fpgadeveloper.com/2008/10/timer � with� interrupts.html

18

Appendix: User Manual

Entire system setup:
1. Connect a USB keyboard and a VGA monitor to Digilent Nexys3 FPGA board.
2. Connect the FPGA board to a computer using USB cable to download bit file.

Use ”w,a,s,d” of the keyboard to move the player tank up, left, down or right. Press
”enter” to fire a bullet and the player only can fire maximum 3 bullets at the same
time. The player have 3 lives to complete the game. If the player run out of life it will
automatically jump to the level 1 for restarting the game.

19

Flavius Gruian
A very good report, interesting to read, with many insights. Overall a very good project. Well done!

