
Project

0 to 4 player pong

Robert Foss (dt08rf1@student.lth.se)

Mikael Sahlström (dt08ms2@student.lth.se)

Mikael Nilsson (dt08mn2@student.lth.se)

Flavius Gruian
It is customary to include Date and maybe Course code and name on the title page.

Contents

1 Abstract 3

2 Introduction 3

3 Hardware 3
3.1 Microblaze 0 and 1 . 4
3.2 VGA controller . 4
3.3 PS/2 Controller . 5
3.4 7 segment display . 5
3.5 Device Utilization summary . 6

4 Software 6
4.1 AI . 6

5 Installation and controls 6

6 Lessons and conclusions 6

7 Contributions 7

8 Appendix: A 8

1 Abstract

This project implements a 0-4 player pong game on a Digilent Nexys 3 FPGA.
The game is displayed via VGA and a 7 segment display. A USB-keyboard
is used to control the gameplay. Uncontrolled players are controlled by an AI
player. Two microblaze cpus are used, one for gameplay and one for reading
keyboard input.

2 Introduction

This project covers a 0-4 player Pong game on a Digilent Nexys 3 FPGA.
The game is displayed via VGA using a resulotion of 640x480 pixels at 60Hz

and 7 segment display.
The players paddles are controlled with an USB keyboard which internally

is connected via PS/2. Each paddle can be moved in 2 directions. A player can
elect to give up control of his paddle by enabling an AI player. The AI player
can be enabled for any combination of actual and AI players.

One goal of this project was to make a fun game, if the goal was achived is
for the players to determine.

Figure 1: A photo of actual gameplay.

3 Hardware

The hardware consists of 5 parts. Microblaze 0 and 1, VGA controller, PS/2
controller and 7 segment controller.

3

Flavius Gruian

Flavius Gruian
There are spell checkers for latex, so you should not have spelling errors in your report.

Flavius Gruian
Nice with a photo of the system in action.

Flavius Gruian
Actually that was the least of the goals. The main goal should have been for you to learn more.

Figure 2: Hardware and communication paths.

3.1 Microblaze 0 and 1

Microblaze 0 handles gameplay logic and updating displays (VGA and 7seg).
Microblaze 1 is responsible for reading and parsing PS/2 input from the key-
board. The reason for the division of labour between the two cpu cores is
that the main loop of the game is longer than the minimum amount of time a
keystroke will be available for polling from the PS/2 interface. Hence the PS/2
polling was split into a second cpu core due to ease of implementation.

Microblaze 0 communicates with the VGA controller via FSL, since the
amount of data needed by VGA controller to accurately depict the current
game-state is only 76 bits, see section 8.

Communication between microblaze 0 and 1 is handled via shared bram,
which describes which keys are currently active. The shared memory is only
read by cpu 0 but read and written by cpu 1.

3.2 VGA controller

The VGA controller is split into two parts. One that handles the VGA spe-
cific things (VGA monitor controller in figure 3). The other part handles the
communication with the mircoblaze and logic for when to draw, called the logic
part (VGA I/O, game state and combinatorial net in figure 3).

The microblaze sends the coordinates of the paddles and balls to the VGA
logic part which also recives the pixel that currently (or soon) is going to be

4

Flavius Gruian
A more accurate picture would be better - Should show the busses or other interfaces used.

Flavius Gruian

drawn. The logic part then calculates if that pixel is part of either the paddles
or the balls and if it is, the logic part sends paint to the VGA part and that
pixel will be painted. This means that the forms and sizes are hardcoded in
VHDL.

The VGA part runs on a 25 MHz clock while the logic part runs on a 50
Mhz clock (same as the microblazes). The choice to run the VGA part on 25
Mhz was to make the vertical- and horizontal-sync easy to handle.

Figure 3: Internal design of VGA controller.

3.3 PS/2 Controller

The PS/2 controller consists of the xps ps2 module from Xilinx Platform Studio.
The Nexys 3 board uses the microcontroller PIC24FJ192 to abstract away the
USB HID interface and present a PS/2 keyboard interface. The xps ps2 module
reads ps2 data and clock and via PLB communicates scan-codes which represent
key events.

Like mentioned earlier the PS/2 interface is polled by cpu 1 to retrieve new
key events.

3.4 7 segment display

The 7 segment display consists of the digilent sevseg disp module from the Dig-
ilent Nexys 3 EDK. The module is connected directly to the hardware via the
anode and cathode logic vectors. The module reads data via PLB from cpu 0.

5

Flavius Gruian
The size of paddles could be easily made adjustable, making the gameplay more fun.

Flavius Gruian

Flavius Gruian
As mentioned ...

Flavius Gruian

Flavius Gruian
It's improper to say that the module reads data, since the module is a slave on the PLB. The CPU writes data to the module!

3.5 Device Utilization summary

Table 1 shows resource utilization. Utilization could easily be lowered by moving
away from a two core design, for our usecase high utilization is not problematic.

Used Available Utilization
Occupied Slices 2,240 2,278 98%
Slice Registers 5,390 18,244 29%
Slice LUTs 6,809 9,112 74%

Table 1: FPGA resource utilization.

4 Software

Software will keep the game state (paddle positions, AI movement for each
enabled AI and ball positions) updated and send current positions to the VGA
controller. A life counter is displayed on the 7 segment display with each segment
representing the number of lives left for a player. The last players with any lives
left is the winner.

4.1 AI

Each paddle can be controlled by a so called AI. If a paddle is controlled by
the AI, a function is called with parameters containing the current game state
(poistions of paddles and balls) and which paddle it is supposed to control. This
function will return either 1, -1 or 0 depending och which direction the AI wants
the paddle to move. The direction is deterimined by predicting where each ball
will hit by checking the movment speed on the x-axis and on the y-axis. The AI
will only react to balls moving (on any axis) towards the paddle. The prediction
does only cover the next hit, not where the ball will go after a hit. The AI is
not agressive and only tries to prevent the ball from hitting a wall.

5 Installation and controls

Included in our archive is the download.bit file. Use Digilent adept or a similiar
tool to download the game onto a Nexys 3 FPGA.

The game is controlled via Q/A, T/Y, O/P, PgUp/PgDn and 1/2/3/4 for
AI toggling.

6 Lessons and conclusions

The first iteration of this project was not a game but rather an ethernet switch.
Due to limitations in the tooling and time considerations we were forced to scrap
this idea and replace it with something a bit more feasible.

An earlier iteration of the game used a custom PS/2 module which proved
to be fairly hard to integrate due to non-digital characteristics of the internal
PS/2 interface combined with poor diagnostic support in the tooling.

An alternative solution to using polling would be to use interrupts for PS/2
communication. The reason for not using interrupts is pragmatism, it is easier

6

and faster to implement a second cpu core and polling than it is to implement
well functioning interrupts.

7 Contributions

The VGA controller was written by Mikael and Mikael. The game logic was
written by Mikael N. The AI was written by Mikael S. The seven segment display
and PS2 keyboard was written by Robert. Software and hardware integration
was done by all of us.

7

Flavius Gruian
Well, yes, but then you have the shared memory issue (not to mention the size), which for more complex data would be a problem.

Flavius Gruian
A list of references would not hurt.

8 Appendix: A

Paddle0, y -- 9 bits // West

Paddle1, y -- 9 bits // Eeast

Paddle2, x -- 10 bits // North

Paddle3, x -- 10 bits // South

Ball0, x -- 10 bits

Ball0, y -- 9 bits

Ball1, x -- 10 bits

Ball1, y -- 9 bits

Sum -- 76 bits

0 16 31

+--------------------------------+

|Paddle0y|Paddle1y|Paddle2,x| |

+--------------------------------+

|Paddle3,x|Ball0, x |Ball0, y| |

+--------------------------------+

|Ball1, x |Ball1, y| |

+--------------------------------+

Bitfields for CPU!VGA communication.

8

