
Design of Embedded System, Advanced Course – EDA385

PONG

Final Report

October, 26th 2012

Fernando de Andrade Pereira

fernando.an.pereira@gmail.com

int12fp2@student.lu.se

mailto:fernando.an.pereira@gmail.com
mailto:int12fp2@student.lu.se

 Design of Embedded System, Advanced Course – EDA385

1

Abstract
Pong is one of most classic games from the video game era. Since its introduction, in 1972,

until the present day, it has received several new versions with different features, gameplays and

graphics, in many kinds of platforms.

The FPGAs lets us to develop joint solutions of hardware and software, and, although the

resources are limited, the optimization can be raised to higher levels. In this project, this higher

integration was one of the main factors that led to a working solution in many cases.

The system developed has a simple hardware architecture, based in the Xilinx™ MicroBlaze

processor and some peripherals, including a VGA controller, and the software architecture is based in

the partition of the routines that implement the game logic and the routines that do the

communication between the processor and the peripherals.

Lots of problems occurred during the development and, with this, that much knowledge has

been acquired.

Flavius Gruian
If there are logos here, there should be logos of Lund University rather than something else…

 Design of Embedded System, Advanced Course – EDA385

2

Contents
1 Introduction ... 4

1.1 History ... 4

1.2 The Embedded System Pong ... 4

2 Specifications ... 5

2.1 Initial Propose .. 5

2.2 Modifications ... 5

2.3 Equipment needed .. 5

3 Implementation ... 6

3.1 Hardware ... 6

3.1.1 Architecture ... 6

3.1.2 VGA Controller ... 6

3.2 Software .. 8

3.2.1 Software structure ... 8

3.2.2 Game Logic .. 10

3.2.3 Interrupt Routines ... 13

3.2.4 Keyboard Polling .. 14

3.2.5 The Computer Controlled Pad ... 14

4 Problems and Solutions ... 14

5 Final Result .. 15

5.1 FPGA Usage ... 15

5.2 The game ... 19

5.3 Tests ... 19

6 User Manual .. 20

6.1 Preparations .. 20

6.2 Playing ... 20

7 Possible Extensions .. 22

8 Conclusion and Lessons Learned ... 22

 Design of Embedded System, Advanced Course – EDA385

3

9 Contributions and Thanks ... 23

10 Bibliography and References ... 23

 Design of Embedded System, Advanced Course – EDA385

4

1 Introduction

1.1 History
The game Pong was first developed by Atari Inc. in 1972, and was one of the first arcade games

to reach mainstream popularity. It was the first video game to be considered a sports simulator,

inspired in the table tennis.

The first implementation of the game used only TTL technology with discrete components. No

processor, memory or software was used. Nevertheless, the miniaturization of the system and the

introduction of new features in the game led to the utilization of most advanced technologies as

microprocessors, RAM, ROM and implementation of the logic in software.

The game was ported to several other platforms and received a lot of new features, like

modifications in the gameplay and better graphics.

1.2 The Embedded System Pong
The goal of this project was develop a complete system (hardware and software) as a platform

where one or two players can play Pong. This system was implemented to run in a Nexys™ 3 board

with a Spartan-6 FPGA.

The hardware architecture is based on a Xilinx™ MicroBlaze processor with BRAM and some

peripherals, as a VGA controller, a timer, a PS/2 controller and a seven segments display controller.

The source was coded in VHDL.

The software was coded in C and compiled to MicroBlaze instructions. Beyond the game logic,

some high level functions for the communication between the processor and the peripherals were

also implemented in software. Although this increases the RAM usage, it facilitates the codification.

There are some differences between this implementation’s gameplay and another Pong’s

implementations. The major difference is in the way that the direction and the speed of the ball is

calculated after it hits a pad. In the original implementation, by example, the speed and the direction

of the ball had depended of the position in pad that the ball hits. In this implementation, it depends

also of the previous direction and speed of the ball.

Throughout the project development, some modifications in the specifications of the system

had been done, because of short time and better solutions thought a posteriori.

A lot of problems occurred because of poor documentations of built-in components.

 Design of Embedded System, Advanced Course – EDA385

5

2 Specifications

2.1 Initial Propose
At the first moment, the goals of the project were determined as:

 Output graphics to a VGA monitor in a resolution of 640x480 @ 60Hz;

 Score of the players showed in the seven segments display;

 Input controls captured from an USB keyboard;

 Game for 2 players or 1 player (computer use artificial intelligence to control the pad);

 Rendering via software;

 Objects (pads and ball) with rounded edges;

 Different levels of difficulty.

2.2 Modifications
While the project had been developed, some modifications were done in the propose (because

these modifications are a better design options or there was no time for the implementation, due to

my group mate has dropped out):

 Rendering via hardware (done by the VGA controller, the same component responsible

for the VGA output). It reduces the usage of RAM and cycles of the MicroBlaze;

 Input controls captured from a USB keyboard, but with a PS/2 controller;

 Use of a pseudo-A.I. to the computer controlled pad in the 1 player match;

 Objects with rectangular edges, instead of rounded ones (simplification);

 No different levels of difficulty (simplification).

2.3 Equipment needed

 Nexys™ 3 Spartan-6 FPGA Board;

 VGA monitor;

 USB Keyboard (The system works well with Swedish and Brazilian – ABNT2 –

standards. Other kinds of keyboard standards weren’t tested, but it must work with

most of the QWERTY standards).

Flavius Gruian
Initial Proposal

 Design of Embedded System, Advanced Course – EDA385

6

3 Implementation

3.1 Hardware

3.1.1 Architecture

The architecture of the system is based on the Xilinx™ MicroBlaze processor.

All the components are built-in components from Xilinx™ or Digilent™ libraries, unless the VGA

controller, and don’t need especial description. The MicroBlaze is a single core processor with 50MHz

clock, without floating point unit. The BRAM size utilized is 32Kbytes.

3.1.2 VGA Controller

The VGA controller is both the unit responsible by the rendering and the generation of the

VGA signals.

It has 7 registers accessible by software in slave mode:

 reg_slv0 (ball radius);

 reg_slv1 (pad1 radius);

 reg_slv2 (pad2 radius – and the information about the color of this pad);

 reg_slv3 (ball position in the x axis);

 reg_slv4 (ball position in the y axis);

 reg_slv5 (pad1 position in the y axis);

 reg_slv6 (pad2 position in the y axis).

The registers are all 32 bits, but only 10 bits are used in each register, unless in the reg_slv2,

that use the 11bits, the 11th bit contains the information about the color of the pad, that can be blue

Flavius Gruian

Flavius Gruian
This picture is not very accurate, since the PLB/AXI bus is not shown. You should have the interfaces between these components specified in more detail...

Flavius Gruian

Flavius Gruian
Your english is generally rather good, so my comments here are intended only to improve it further:

Flavius Gruian
...except the VGA controller, and do not need a special (detailed) description.

Flavius Gruian

Flavius Gruian

Flavius Gruian
of

 Design of Embedded System, Advanced Course – EDA385

7

(PvP game mode) or green (PvC game mode). 10 bits are enough to represent values between 0 and

639, the range of possible values to represent the position in x axis. This values are present in the bits

22 to 31 of the registers where the bit 22 is the most significant bit (in the reg_slv2, the bit 21

contains the information about the color).

While the VGA output generate the 8 bits color output, it verifies if that bit is a wall, ball or one

of the pads, generating a bit of the respective color, or a black bit otherwise.

The following code illustrates the rendering:

if(((horizontal_counter - (slv_reg0(23 to 31) & '0')) < "0010010000")

 and ((vertical_counter - "0000100111") < (slv_reg5(22 to 31) + slv_reg1(22 to 31)))

 and ((vertical_counter - "0000100111") >= (slv_reg5(22 to 31) - slv_reg1(22 to 31))))

 then

 R0 <= '1';

 R1 <= '1';

 R2 <= '1';

 G0 <= '1';

 G1 <= '1';

 G2 <= '1';

 B1 <= '0';

 B2 <= '0';

 --

 elsif (((horizontal_counter + (slv_reg0(23 to 31) & '0')) >= "1100010000")

 and ((vertical_counter - "0000100111") < (slv_reg6(22 to 31) + slv_reg2(22 to 31)))

 and ((vertical_counter - "0000100111") >= (slv_reg6(22 to 31) - slv_reg2(22 to 31))))

 then

 R0 <= '0';

 R1 <= '0';

 R2 <= '0';

 G0 <= '0';

 G1 <= '0';

 G2 <= slv_reg2(21);

 B1 <= '1';

 B2 <= not slv_reg2(21);

 --

 elsif(((horizontal_counter - slv_reg3(22 to 31) - slv_reg0(22 to 31)) < "0010010000")

 and((horizontal_counter - slv_reg3(22 to 31) + slv_reg0(22 to 31)) >= "0010010000")

 and ((vertical_counter - slv_reg4(22 to 31) - slv_reg0(22 to 31)) < "0000100111")

 and ((vertical_counter - slv_reg4(22 to 31) + slv_reg0(22 to 31)) >= "0000100111"))

 then

 R0 <= '1';

 R1 <= '1';

 R2 <= '1';

 G0 <= '1';

 G1 <= '1';

 G2 <= '1';

Flavius Gruian
If you wanted to display the behavior, a diagram would have been better. If you do want to display code, you should compact it a little bit.

 Design of Embedded System, Advanced Course – EDA385

8

 B1 <= '1';

 B2 <= '1';

 --

 elsif(((vertical_counter - slv_reg0(22 to 31)) < "0000100111")

 or ((vertical_counter + slv_reg0(22 to 31)) >= "1000000111"))

 then

 R0 <= '1';

 R1 <= '1';

 R2 <= '0';

 G0 <= '0';

 G1 <= '0';

 G2 <= '0';

 B1 <= '0';

 B2 <= '0';

 --

 else

 R0 <= '0';

 R1 <= '0';

 R2 <= '0';

 G0 <= '0';

 G1 <= '0';

 G2 <= '0';

 B1 <= '0';

 B2 <= '0';

 end if;

The values "0000100111" (39) - "1000000111" (519) represents the vertical_counter range

where the bits are rendered and the values "0010010000" (144) - "1100010000" (784) the

horizontal_counter range.

These values are chosen because of the generation of the signals Vertical Sync and Horizontal

Sync, because of the VGA standards times with 25MHz (the input clock is the same as the processor –

50MHZ – but there’s one process in the VGA controller that reduces the clock by the half)

3.2 Software

3.2.1 Software structure

The software was partitioned in 7 source code and 7 headers.

 ‘main.c’ that call the routine of initialization of the peripherals and the function

match() from ‘metagame.c’;

 ‘metagame.c’ contains the logic of the game. Calculate the ball and pads position in

each step and communicate with the peripherals calling the high level drivers’

routines;

 Design of Embedded System, Advanced Course – EDA385

9

 ‘keyboard_driver.c’ is the driver responsible by initialize the PS/2 driver and capture

the keys in the polled mode, sending the information to the game about the state of

the pads (moving up, down or stopped) , if ESC key was pressed (pausing/ resuming

the game), and if at the beginning if left or right arrow are pressed, changing the game

mode, or ENTER, to start the game;

 ‘led_driver.c’ is the drver responsible by initialize the GPIO in the ports where there’re

leds and turn on/off leds;

 ‘ssd_driver.c’ is the driver responsible to send information to the seven segment

display controller about the values in that have to be showed (scores);

 ‘timer_driver.c’ is the driver responsible by initialize the timer and also contains the

handler routine to threat the timer interruption (increment counters of ‘metagame.c’);

 ‘vga_driver.c’ is the driver responsible by write in the slave registers of the VGA

controller the respective values.

 Design of Embedded System, Advanced Course – EDA385

10

3.2.2 Game Logic

The most important routines in the game logic are represented in dataflows, all this functions

are contained in the file ‘metagame.c’.

The following dataflow represents the match() function, that contains the logic of one match:

Start

Write the initial
values in the

variables

Poll the
keyboard

Game started?

No

Yes

Poll the
Keyboard Game paused?

Yes

nextStep()

Poll the
keyboard

Someone win?

No

Yes Turn off the
loser pad

Poll the
keyboard

Game paused?

End

No

Yes

Flavius Gruian
Good, instructive diagram!

Flavius Gruian

 Design of Embedded System, Advanced Course – EDA385

11

The following dataflow represents the nextStep() function:

Start

Pad1 counter >=
limit?

Pad2 counter >=
limit?

Ball x counter >=
limit?

Ball y counter >=
limit?

No No No

nextStepPad1()

Yes

Send
information to

the VGA
controller

Restart Pad1
counter

nextStepPad2()

Yes

Send
information to

the VGA
controller

Restart Pad2
counter

nextStepBallX()

Yes

Send
information to

the VGA
controller

Restart ball x
counter

nextStepBallY()

Yes

Send
information to

the VGA
controller

Restart ball y
counter

End

The following dataflow represents the nextStepPad1() function:

Start

Pad moving UP
and don’t reach the

max position
No EndNo

Increments position
of pad 1 by STEP

Yes

Decrements
position of pad 1 by

STEP

Yes

Pad moving DOWN
and don’t reach the

min position

 Design of Embedded System, Advanced Course – EDA385

12

The following dataflow represents the nextStepPad2() function:

Start

Pad moving UP
and don’t reach the

max position
No EndNo

Increments position
of pad 1 by STEP

Yes

Decrements
position of pad 1 by

STEP

Yes

Pad moving DOWN
and don’t reach the

min position

Gamemode is
PvP

Yes

Centre of the pad is
below the predicted
position of the ball

No

Centre of the pad is
above the predicted
position of the ball

No

No

Increments position
of pad 1 by STEP

Yes

Decrements
position of pad 1 by

STEP

Yes

The following dataflow represents the nextStepBallY() function:

Start

Move ball in the y
axis by STEP, in the
current direction of

the ball

Ball hits a wall? EndNo

Invert the ball
direction in y axis

Yes

 Design of Embedded System, Advanced Course – EDA385

13

The following dataflow represents the nextStepBallX() function:

Start

Move ball in the x
axis by STEP, in the
current direction of

the ball

Ball cross the
player1 goal

line?
No

Invert the ball
direction in x ans y

axis;
Put the ball in the

initial position;
Return the speed of
the ball to the initial

position;
Increments player 2

score

Yes

Ball cross the
player2 goal

line?

Yes

Invert the ball
direction in x ans y

axis;
Put the ball in the

initial position;
Return the speed of
the ball to the initial

position;
Increments player 1

score

Ball hits the
pad1?No Ball hits the

pad2?No

Invert the ball
direction in y axis;
Calculate the new

speed of the ball in
both axis

Yes

Ball hits the pad above
the pad’s centre?

Yes

New ball direction
in y axis is positive

New ball direction
in y axis is negative

No

Invert the ball
direction in y axis;
Calculate the new

speed of the ball in
both axis

Ball hits the pad above
the pad’s centre?

Yes

New ball direction
in y axis is positive

New ball direction
in y axis is negative

No

Yes

Ball position
prediction in y axis

is the initial position
of the ball in y

Game mode is
PvC?

Calculate the exact
position where the

ball will hit the pad2
and introduce a
random error

Yes

End

No

Every time there’s a timer interruption, four variables (ball_y_counter, ball_x_counter,

pad1_counter and pad2_counter) are incremented. There are other four values (ball_x_time,

ball_y_time, PAD1_TIME0 and PAD2_TIME0) that represent the limit of each counter. When the

counter reaches the limit, occurs the respective moving. So, these limits are the inverse of the

respective speeds. When the ball hits a pad, the values of ball_x_time and ball_y_time are decreased,

and the acceleration may be greater in one of the axis, depending of the distance between where

the ball hit the pad and the center of the pad. If this distance is huge, the ball accelerates more in the

y axis, if it is small, it accelerates more in the x axis.

3.2.3 Interrupt Routines

The software was designed to treat only one interrupt, the timer interrupt. When it occurs, the

counters (ball_y_counter, ball_x_counter, pad1_counter and pad2_counter) are incremented by one.

The interrupt is programed to occur in every 0.0001s, with a 50MHz clock. The timer is programed in

auto-reload mode.

Flavius Gruian
All these diagrams are very good, but some are rather simple. You should focus on the complex behaviors rather than the simple ones.

Flavius Gruian

Flavius Gruian
interrupt

Flavius Gruian

Flavius Gruian

 Design of Embedded System, Advanced Course – EDA385

14

3.2.4 Keyboard Polling

The inputs from keyboard are captured using the polled mode. This mode was chosen instead

of the interrupt mode due to the difficult to make the game response to the keyboard works

correctly.

Every time the keyboard is polled (as showed in the match() function), the keyboard driver

compares the scan code read (if there’s one) with the following values:

 Stop (0xF0): read the next value, if it is a W (0x1D) or S (0x1B) stop the first pad,

otherwise if it is a Up Arrow (0x75) or a Down Arrow (0x72) stop the second pad;

 Up Arrow (0x75): moves the second pad up;

 Down Arrow (0x72): moves the second pad down;

 W (0x1D): moves the first pad up;

 S (0x1B): moves the first pad down;

 Enter (0x5A): if the game is not started yet, start the game;

 Right Arrow (0x74): if the game is not started yet, change the game to PvC;

 Left Arrow (0x6B): if the game is not started yet, change the game to PvP;

 ESC (0x76): pause/resume the game.

3.2.5 The Computer Controlled Pad

The computer controlled pad use a policy of moving based in the prediction of which will be

the ball position in y axis when it return to hit the second pad. When the ball hits the computer

controlled pad, the prediction becomes the initial position of the ball in y axis (the center), so the pad

moves to the center. When the ball hits the first pad position it calculates, from the current ball

position and speeds and using similarity of triangles the exact point where the ball will return, then it

introduces a random error (based in the ball_y_counter, that is independent from the

ball_x_counter) to this position and the pad moves to this position.

This calculation occurs in the function ballNextStepX().

4 Problems and Solutions
 The poorly documented usage of the built-in peripherals, especially the Seven

Segments Display Controller. The solution was try to write values in different

addresses of this peripheral, using pointers in C, and see if the result is the expected;

 The slave registers of the VGA are written in a nontrivial way, and this kind of

communication is poorly documented. The solution was write some values in this

 Design of Embedded System, Advanced Course – EDA385

15

registers and try to retrieve, someway, the information. So it was discovered that the

10 bits written in the registers are the bits 22 to 31;

 Discover the order that the keyboard sends the bytes of the scan codes to the PS/2

controller in polled mode. The solution was press the button and show the

hexadecimal scan codes in the seven segment display;

 Find a good probability factor to the error of the computer controlled pad, because it

cannot be so easy or so hard to score goals in the computer controlled pad. The

solution was to try a lot of values and play against the computer, until found a

balanced amount of goals for both players.

5 Final Result

5.1 FPGA Usage

XPS Synthesis Summary (estimated values) [-]

Report Generated
Flip
Flops
Used

LUTs
Used

BRAMS
Used Errors

system

on 17. okt
21:32:12
2012

4638 5509 17 0

system_vga_ctrl_0_wrapper

on 17. okt
21:31:50
2012

393 631 0

system_clock_generator_0_wrapper

on 17. okt
21:31:40
2012

 0

system_mb_plb_wrapper

fr 12. okt
06:46:48
2012

161 427 0

system_xps_intc_0_wrapper

to 11. okt
23:22:48
2012

120 85 0

system_proc_sys_reset_0_wrapper

to 11. okt
23:22:40
2012

69 55 0

system_mdm_0_wrapper

to 11. okt
23:22:34
2012

123 126 0

system_xps_timer_0_wrapper

to 11. okt
23:22:22
2012

293 272 0

system_mem_bus_mux_0_wrapper to 11. okt 57 0

?&ExpandedTable=EDKSynthesisSumary
file:///C:/Temp/project/hardware/synthesis/system_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_vga_ctrl_0_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_clock_generator_0_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_mb_plb_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_xps_intc_0_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_proc_sys_reset_0_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_mdm_0_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_xps_timer_0_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_mem_bus_mux_0_wrapper_xst.srp

 Design of Embedded System, Advanced Course – EDA385

16

23:22:12
2012

system_digilent_sevseg_disp_wrapper

to 11. okt
23:22:06
2012

320 484 0

system_digilent_quadspi_cntlr_wrapper

to 11. okt
23:21:58
2012

556 723 1 0

system_ps2_mouse_keyboard_wrapper

to 11. okt
23:21:42
2012

553 758 0

system_push_buttons_4bits_wrapper

to 11. okt
23:21:30
2012

98 52 0

system_leds_8bits_wrapper

to 11. okt
23:21:22
2012

126 64 0

system_rs232_uart_1_wrapper

to 11. okt
23:21:14
2012

149 153 0

system_lmb_bram_wrapper

to 11. okt
23:21:00
2012

 16 0

system_ilmb_cntlr_wrapper

to 11. okt
23:20:54
2012

2 6 0

system_dlmb_cntlr_wrapper

to 11. okt
23:20:48
2012

2 6 0

system_dlmb_wrapper

to 11. okt
23:20:42
2012

1 0

system_ilmb_wrapper

to 11. okt
23:20:36
2012

1 0

system_microblaze_0_wrapper

to 11. okt
23:20:16
2012

1671 1610 0

Device Utilization Summary (actual values) [-]

Slice Logic Utilization Used Available Utilization Note(s)
Number of Slice Registers 3,688 18,224 20%

 Number used as Flip Flops 3,681

 Number used as Latches 0

 Number used as Latch-thrus 0

file:///C:/Temp/project/hardware/synthesis/system_digilent_sevseg_disp_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_digilent_quadspi_cntlr_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_ps2_mouse_keyboard_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_push_buttons_4bits_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_leds_8bits_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_rs232_uart_1_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_lmb_bram_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_ilmb_cntlr_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_dlmb_cntlr_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_dlmb_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_ilmb_wrapper_xst.srp
file:///C:/Temp/project/hardware/synthesis/system_microblaze_0_wrapper_xst.srp
?&ExpandedTable=DeviceUtilizationSummary

 Design of Embedded System, Advanced Course – EDA385

17

 Number used as AND/OR logics 7

Number of Slice LUTs 4,364 9,112 47%

 Number used as logic 4,077 9,112 44%

 Number using O6 output only 2,893

 Number using O5 output only 245

 Number using O5 and O6 939

 Number used as ROM 0

 Number used as Memory 150 2,176 6%

 Number used as Dual Port RAM 64

 Number using O6 output only 0

 Number using O5 output only 0

 Number using O5 and O6 64

 Number used as Single Port RAM 0

 Number used as Shift Register 86

 Number using O6 output only 27

 Number using O5 output only 1

 Number using O5 and O6 58

 Number used exclusively as route-thrus 137

 Number with same-slice register load 114

 Number with same-slice carry load 23

 Number with other load 0

Number of occupied Slices 1,649 2,278 72%

Nummber of MUXCYs used 1,052 4,556 23%

Number of LUT Flip Flop pairs used 5,025

 Number with an unused Flip Flop 1,857 5,025 36%

 Number with an unused LUT 661 5,025 13%

 Number of fully used LUT-FF pairs 2,507 5,025 49%

 Number of unique control sets 236

 Number of slice register sites lost
 to control set restrictions 871 18,224 4%

Number of bonded IOBs 81 232 34%

 Number of LOCed IOBs 81 81 100%

 IOB Flip Flops 28

Number of RAMB16BWERs 16 32 50%

Number of RAMB8BWERs 2 64 3%

Number of BUFIO2/BUFIO2_2CLKs 1 32 3%

 Number used as BUFIO2s 1

file:///C:/Temp/project/hardware/implementation/system_map.xrpt?&DataKey=IOBProperties

 Design of Embedded System, Advanced Course – EDA385

18

 Number used as BUFIO2_2CLKs 0

Number of BUFIO2FB/BUFIO2FB_2CLKs 0 32 0%

Number of BUFG/BUFGMUXs 3 16 18%

 Number used as BUFGs 3

 Number used as BUFGMUX 0

Number of DCM/DCM_CLKGENs 0 4 0%

Number of ILOGIC2/ISERDES2s 5 248 2%

 Number used as ILOGIC2s 5

 Number used as ISERDES2s 0

Number of IODELAY2/IODRP2/IODRP2_MCBs 0 248 0%

Number of OLOGIC2/OSERDES2s 21 248 8%

 Number used as OLOGIC2s 21

 Number used as OSERDES2s 0

Number of BSCANs 1 4 25%

Number of BUFHs 0 128 0%

Number of BUFPLLs 0 8 0%

Number of BUFPLL_MCBs 0 4 0%

Number of DSP48A1s 3 32 9%

Number of ICAPs 0 1 0%

Number of MCBs 0 2 0%

Number of PCILOGICSEs 0 2 0%

Number of PLL_ADVs 1 2 50%

Number of PMVs 0 1 0%

Number of STARTUPs 0 1 0%

Number of SUSPEND_SYNCs 0 1 0%

Average Fanout of Non-Clock Nets 3.88

Flavius Gruian
These full tables are not really very interesting. You could have compiled the data a bit and show only the relevant measures.

 Design of Embedded System, Advanced Course – EDA385

19

5.2 The game

The final result is a game controlled by keyboard that can be played by one or two players. The

score of the match is showed in the seven segment display present on the board. The match starts

with zero points to both players and ends when some player scores twelve points. The two left digits

show the left player score and the two right digits show the right player score.

The graphics of the game are really simple, with objects (pads, walls and ball) with rectangular

edges. The left player’s pad is yellow, the right player’s pad is blue if it is a human player, or green if it

is a computer player. The ball is white and the walls are red.

5.3 Tests
The final game was tested with several matches between real players that give a feedback

about the gameplay. Most of the feedbacks were positive, but some user complained about the bad

response of the keyboard when 3 or more keys are pressed in the same time. The players found the

game quite fun, especially because of the acceleration of the ball.

Flavius Gruian
Nice with photos!

 Design of Embedded System, Advanced Course – EDA385

20

6 User Manual
The instructions for the use of the system are very simple.

6.1 Preparations
After the programming of the FPGA, the user has to plug the VGA port of the Nexys™ 3 board

in a VGA monitor and plug a USB keyboard in the USB port of the board.

6.2 Playing
When the system is turned on, the first view is this:

 Design of Embedded System, Advanced Course – EDA385

21

One can press the Enter key on the keyboard to start the match (Player vs. Player), or press the

right arrow key to change the view to this:

If the user presses Enter in this screen, the match will start (Player vs. Computer). One can

press the left arrow key to return to the first screen (Player vs. Player mode).

During the game, the first player (left pad – both in PvP and PvC modes) controls the pad using

the W key to move it up and the S key to move it down. The second player (right pad in PvP mode)

controls the pad with the Up and Down arrows keys. One can press ESC to pause the game, and ESC

again to resume it.

After a player scores 12 points, the game will end, and only the winner pad will appear in the

screen:

When this occurs, one must press ESC to return to the initial screen.

 Design of Embedded System, Advanced Course – EDA385

22

Summarizing:

7 Possible Extensions
Some features can be introduced in the system in the future:

 Different levels of difficulty (not introduced yet);

 Objects with rounded edges (not introduced yet);

 More balls (some small modifications in the rendering hardware component are

needed);

 A menu to the game (huge modifications in the rendering hardware component are

needed);

 A better (more realistic) A.I. for the computer controlled pad;

 Create a DMA to the communication (instead of slave registers) with the rendering

hardware component, making the system more flexible;

 Usage of interrupt instead of polled mode to the capture of signals from the keyboard.

8 Conclusion and Lessons Learned
One of the most important lessons of this project was that a good documentation is as

important as a good implementation in most of cases. With there’s no good documentation, people

will lost a lot of time to find how to integrate the components in their systems.

Another important lesson is that a good partition of the code (both VHDL and C) can increase

the processor and RAM usage, and also the code, but reduces the debugging time.

The simplest solution is most of times better than a generic one (that can solve a lot of

problem, not just the specified one) in the embedded systems design, because of the limitations in

the RAM size and processor speed. It can reduce the flexibility of the system to future changes, but it

is a design pattern on systems with limited resources.

Flavius Gruian
As a general rule: when copying pictures or any other material from other documents or websites, you need to give a reference to it!

 Design of Embedded System, Advanced Course – EDA385

23

9 Contributions and Thanks
Most of the system was developed by Fernando de Andrade Pereira (the project’s owner).

Some drivers as ‘keyboard_driver.c’, ‘led_driver.c’, ‘timer_driver.c’ and the respective headers were

partially copied from examples from the Xilinx™ library.

This project was developed with support by CNPq – Conselho Nacional de Desenvolvimento

Científico e Tecnológico –, of the Ministry for Science and Technology of Brazil.

10 Bibliography and References
Pong history:

 http://www.pong-story.com/atpong1.htm

Digilent board Nexys 3 user manual, schematics and examples of use:

 http://www.digilentinc.com/Data/Products/NEXYS3/Nexys3_rm.pdf

 http://www.digilentinc.com/Data/Products/NEXYS3/NEXYS3_sch.pdf

 http://www.digilentinc.com/Data/Products/NEXYS3/Nexys3_EDK_GPIO_UART.zip

VGA specifications and timing:

 http://martin.hinner.info/vga/timing.html

 http://www.osdever.net/FreeVGA/vga/vga.htm

Keyboard scan codes:

 http://www.ee.bgu.ac.il/~microlab/MicroLab/Labs/ScanCodes.htm

http://www.pong-story.com/atpong1.htm
Flavius Gruian
A very good result, considering you worked alone and you have not used these tools before. Well done!

http://www.digilentinc.com/Data/Products/NEXYS3/Nexys3_rm.pdf
http://www.digilentinc.com/Data/Products/NEXYS3/NEXYS3_sch.pdf
http://www.digilentinc.com/Data/Products/NEXYS3/Nexys3_EDK_GPIO_UART.zip
http://martin.hinner.info/vga/timing.html
http://www.osdever.net/FreeVGA/vga/vga.htm
http://www.ee.bgu.ac.il/~microlab/MicroLab/Labs/ScanCodes.htm

