Project report
MIDI MONSTER

EDA385 — Design of Emedded Systems, Advanced Course
Advisor: Flavius Gruian

Johan Wennersten (dt08jw2@student.lth.se)
Arvid Lindell (dt08al6@student.lth.se)

Abstract

This report describes relevant technical details in a project for the course
EDA385 at Lunds tekniska hogskola. The primary purpose of the project
was to construct a music video game. The system is built on a Nexys-
3 board with a Spartan-6 FPGA. We have written game software and
created two custom hardware devices to handle video and sound output.

Contents

1

Introduction
1.1 Components

Protocols and methods

2.1 DDS . ..

2.2 VGA . . e
2.2.1 Doublescan L o e

23 PS/2 . .

24 MIDI. e

Music

3.1 Hardware e
3.1.1 Softwareregisters.
3.1.2 DDSspecifics

3.2 Software
321 Songdata
3.2.2 Playbackroutine oL 0oL

Video

4.1 Hardware e
4.1.1 Software accessible registers
4.1.2 Background generator, algorithm le blar

4.2 Software L

Input

5.1 Custom input device

5.2 PS/2-keyboard

Device specifics

6.1 Memory

6.2 Utilization

Main application

7.1 Music and game logic synchronization
7.2 Main loop pseudocode L.
Conclusions and discussion

8.1 Problems and solutions
8.2 Learnings o
8.3 Contributions
References

A Installation instructions

System overview

= W

OO Ut

© 00 0 0o I

12
12
12

12
12
13

13
14
14

15
15
15
15

16

17

18

1 Introduction Good introductory picture :) Gives an idea of
how close you were to the initial proposal.

Kirby' s |Adventune* *4&Hufe
IZTIVARTAE POINTS 325 COMBOD
SSWEET®?
= =
| ——]
—]
+200 —-50 —-50

Figure 1: Initial sketch (left) and finished result (right).

We have built a music player with a game similar to Dance Dance Revolution
attached, on a Digilent Nexys 3 board with a Spartan-6 FPGA. The initial idea
was to combine the timing of the music with a game. Blocks slide from the top
of the screen down towards the bottom. The blocks arrive synchronized with
the music, a block arrives at the finish line when a note is played. The goal of
the game is to press one of four buttons on a custom built input device when a
block arrives at the finish line in the corresponding lane.

When you correctly hit a block you get points, and if you hit several in a
row the combo increases. A bigger combo amounts to more points per correctly
hit block. When you miss a block, you lose the combo.

In figure 1 both the initial design sketch and the end result can be seen.
Two video demonstrations can be found at http://tinyurl.com/midiml and

. . s a 1
http://tinyurl.con/midinS . Very good idea to put up videos of the

demos!

LOr http://www.youtube.com/watch?v=0B3MQlaliic, http://www.youtube.com/watch?v=
31048_031NO.

Flavius Gruian
Good introductory picture :) Gives an idea of how close you were to the initial proposal.

Flavius Gruian
Very good idea to put up videos of the demos!

This figure should be a bit more explicit, showing the actual
interfaces (e.g buses and connections).
1.1 Components

Game input Micron RAM Xilinx DMA

~

Song data MicroBlaze Custom VGA

P

Sound
generation

PS/2 input D/A

Figure 2: Hardware architecture.

A custom input device (see section 5.1) and two custom IP blocks have been
constructed, a VGA controller (using an XPS-generated FIFO) and a sound
generator used to generate music from preprocessed MIDI songs. Both con-
trollers are connected to the CPU via the PLB bus. Figure 2 shows the most
relevant data transfers in the system. A more complete system overview can be
found in appendix B.

| Hardware component | IP block
MicroBlaze CPU microblaze
PCM controller xps_mch _emc
Micron RAM controller | xps mch emc
Sound generation soundklump*
VGA controller vga_ 2%
DMA controller xps_central dma
PS/2 controller Xps_ ps2
Timer xps_ timer
RS232 UART xps__uartlite

Table 1: Instantiated components.

Instantiated components are shown in table 1. The BRAM block and con-
trollers, clock generator, PLB etc are excluded from the table. IP blocks tagged
with * are built from scratch. The MicroBlaze and PLB are clocked at 83.3
MHz. XPS 13.2 was used.

Flavius Gruian
This figure should be a bit more explicit, showing the actual interfaces (e.g buses and connections).

2 Protocols and methods
Avoid empty sections between chapter and section. You can
2.1 DDS always introduce the next sections in a few words here.

DDS (Direct Digital Synthesis) can in its most basic form be seen as a counter
(phase accumulator) and a lookup table, with a clock input and an output. In
the following text, the lookup table consists of a single period of a sinusoidal
waveform. For simplicity’s sake, let’s assume that the counter and the LUT are
scaled 1:1 (16 bit counter, 65536 values in the LUT).

When the counter is incremented (at the rising edge of the clock), the corre-
sponding value in the lookup table is sent to the output. By incrementing the
counter with different values, the output signal can change more (or less) often,
and thus generate different frequencies. Of course, Nyquist still applies, so the
maximum frequency that can be generated is DDSqy /2.

When the increment is set to one, the corresponding generated frequency
(base) becomes the DDS clock frequency divided by the number of samples
(S,> 2) in the LUT.

This most basic approach will only allow us to play a limited set of frequen-
cies, namely those that are integer multiples of our base frequency. To improve
this we can make the counter use more bits and only use the top bits for LUT
lookup. This essentially turns the counting operation into fixed point represen-
tation, and it gives us a more fine-grained control over the output frequencies.
Instead of only being able to increment by integers we can now increment by
multiples of 1/2™ (Ip,:,) where n is the number of least significant bits ignored
in the counter.

The accuracy (smallest frequency step, fstep) is given by the following for-
mula.

DDS
fstep - T : Imln

The increment (I) for a given frequency (f) is given by the following formula.

A
~ DDSu

Figure 3: Aliased signal (blue) and interpolated (red).

A problem with DDS is aliasing (see figure 3). This is especially prevalent
when the same sample is continuously sent to the output (which is what happens
when low frequencies are generated). As seen in figure 3, a staircase pattern is
generated in the output signal, and unwanted frequency components will appear.
This can be mitigated to some extent by interpolating the missing samples.

Flavius Gruian
Avoid empty sections between chapter and section. You can always introduce the next sections in a few words here.

Flavius Gruian

2.2 VGA

VGA (Video Graphics Array) is a display standard introduced with the IBM
Personal System/2 in 1987. [1]

The basic timing of VGA is provided by a pixel clock, at each rising edge
a new pixel is sent to the display, in row order. When the end of a row is
reached a horizontal sync signal is sent to the display for a specific duration to
indicate that a new row is to be drawn. The original display type used with
VGA, CRT displays, needed this time to move their electron beam back to its
starting position at the next row. In a similar manner a vertical sync signal is
sent once the bottom row is done to allow the beam to move back to the top.

In addition to this, there is an empty area around the entire image which only
contains black pixels. This is usually divided into sections called the horizontal
and vertical back and front porch. This can be used to center the image on the
screen. [2]

2.2.1 Doublescan

The IBM VGA Reference Manual dictates that a compatible monitor should
support a horizontal refresh of about 31.5 kHz, a vertical refresh of 50-70 Hz
and a pixel clock of 25.175 or 28.332 MHz (25.175 MHz is used for 640x480 at
60Hz). The documentation also specifies a number of standardized resolutions,
ranging from 320x200 to 640x480 pixels. [3]

The problem with having somewhat fixed sync signals is that widely varying
resolutions (such as 320x200 and 640x480) cannot be realized ‘cleanly’. A clean
realization of 320x200 would amongst other things require a horizontal sync rate
of about 15.75 kHz (at 70 Hz vertical refresh), a rate which according to the
IBM Reference Manual need not be supported. The solution is simple, set the
actual monitor resolution to 640x400 (which fits cleanly within the monitor’s
sync range), and draw each pixel and row twice to achieve the desired result.
The technique of drawing each row twice is called doublescan. [3]

2.3 PS/2

There are many resources detailing the operation of the IBM PS/2-keyboard
protocol, but the gist of it is that each transfer (scancode) consists of one start,
stop and parity bit along with 8 data bits. If a scancode is preceded by the value
0xFO (break code), the key has been released. Otherwise, it has been pressed.
The protocol is bi-directional (host-to-device is amongst other things used
to set hardware repeat rate and status LEDs) and synchronous (~16KHz). [4]

2.4 MIDI

MIDI is based around commands. An example command might be “start playing
channel 1 with note 0x03 with a velocity (how hard the key is pressed) of 0x40”.
The corresponding data sequence for this particular command would be 0x91,
0x03 and 0x40. The note parameter corresponds to an offset piano note?.

2See http://en.wikipedia.org/wiki/Piano_key_frequencies and http://www.
tonalsoft.com/pub/news/pitch-bend.aspx. Since a piano only has 88 keys, and the
MIDI notes range from 0 to 127, MIDI note 0 actually corresponds to piano key -20, and
note 127 corresponds to piano key 107.

A MIDI file consists of a header (containing amongst other things the number
of tracks and a base delay unit), and a number of tracks. Each track consists
of a number of MIDI commands. The commands embedded in the tracks are
separated by a delay parameter (7 to 28 bits). The final delay is determined
by the delay parameter in conjunction with the base delay unit specified in the
header.

The MIDI file format supports a wide variety of commands and other eccen-
tricities, which makes writing a feature complete parser very time-consuming. [5]

3 Music

The music is composed of square, triangle and sawtooth waves. These are
generated using DDS (Direct Digital Synthesis), which is a technique to playback
a single sample (of for instance a single period of a waveform) at various speeds
to create notes of different frequencies. See section 2.1 for a more detailed
explanation.

3.1 Hardware

Hardware
D/A
channels /

b

Waveform
LUT

Song data MicroBlaze

Figure 4: Audio data flow block diagram.

The hardware playback channels (a single IP block) are connected to the
CPU using the PLB, and are controlled using software-accessible status registers.
The resulting mix (of the 16 channels) is output using the data pins of PMOD
A and is converted to an analog signal by a simple R2R-ladder. See figure 4 for
the most relevant data flow.

Slices | Slice regs | Slice LUTs | BRAM Which is the hardware in Fig 4 you
890 | 1497 | 2039 | 0 give the utilization for here? It is not

clear from this picture (Microblaze is

. ... notincluded, right?)
Table 2: Sound generator device utilization.

Device utilization can be seen in table 2.

3.1.1 Software registers

We use one 32-bit register for each channel, and they are accessed from the CPU
using the format specified in figure 5.

Flavius Gruian
Which is the hardware in Fig 4 you give the utilization for here? It is not clear from this picture (Microblaze is not included, right?)

1sb
[enable] [waveform select] [dds increment]

1 bit 2 bits 16 bits
Figure 5: Register write description.

Waveform select specifies the waveform to use (00 = square, 01 = triangle,
10 & 11 = sawtooth), enable is set to 1 if the channel is to be active, and DDS
increment sets the active increment for the channel.

3.1.2 DDS specifics

We use a DDS frequency of about 44092 Hz, with 256 samples per waveform,
and ignore 8 bits of the counter. This gives us a frequency step of roughly 0.672
Hz. The following formula gives the frequency for the corresponding MIDI note

(n). (6]
f(n) = (¥2)"% x 440Hz

According to section 2.1, the DDS increment for the specific MIDI note n is
thus given by the following formula.

51

~ DDSeuy,

We precalculate all the necessary increment values (corresponding to MIDI
note 0-127) and store them in RAM (data section of the executable).

3.2 Software
3.2.1 Song data

See comment above about space between...

As mentioned in section 2.4 writing a feature-complete MIDI parser would be
very time-consuming. In this project we decided to simplify matters by not
trying to implement a complete MIDI-parser. What we care about are the
events note on, note off, and delays. Using an already existing tool called
MIDITONES? by Len Shustek we preprocess the MIDI files to keep only those
events.

The tool also rearranges the notes to better suit the available hardware,
which amongst other things removes the need for logic that determines if a
specific tone generator is busy. In short, the MIDITONES data will never try
to enable two notes on the same tone generator. The generated data is parsed
easily, and an example structure can be seen in figure 6.

The note parameter is identical to the original MIDI specification (see section
2.4) and the delay parameter is specified in milliseconds. See the MIDITONES
homepage for a complete specification of the format.

3 Available at http://code.google.com/p/miditones.

Flavius Gruian
See comment above about space between...

Flavius Gruian

[note [on | off]] [tone generator] [note] [delay]

4 bits 4 bits 8 bits 16 bits

Figure 6: MIDITONES data.

MIDITONES will also try to keep notes from a specific MIDI channel to
a single tone generator. This is used when extracting note data for the game
logic (the lead, which is usually contained in a separate MIDI track, is used to
generate note blocks, since it’s most easily distinguished). See section 7.1 for
information pertaining to note extraction.

3.2.2 Playback routine

The sound processing on the CPU is done in an interrupt routine connected
to the built in hardware timer. Whenever a delay event is found a new timer
interrupt is set at the corresponding delay and the function returns, and is thus
run again when the delay has expired. Each time the function is executed it
starts or stops the tone generators dictated by the sound data.

The interrupt routine also synchronizes the music and game logic, which is
described in section 7.1.

4 Video

Micron RAM

b

MicroBlaze Xilinx DMA VGA

Figure 7: Video data flow block diagram.

The game is visualized using a monitor connected to the onboard VGA con-
nector. We are using a resolution of 320x240 pixels (QVGA) with 8bpp. A
custom VGA controller with a ‘chaotic’ background generator has been con-
structed. See figure 7 for the most relevant data flow.

Slices | Slice regs | Slice LUTs | BRAM
110 557 | 630 | 1

Table 3: VGA controller device utilization.

Device utilization can be seen in table 3.

4.1 Hardware

The entire frame is kept in Micron RAM. Video data is sent from Micron RAM
to the VGA controller via the PLB (utilizing a FIFO), in turn using a Xilinx
DMA controller.

The basic clock for the VGA controller is the pixel clock at 25 MHz, which
gives the rate at which new pixels must be sent to the monitor. Due to limited
data throughput from the Micron RAM to the VGA controller we chose to
limit the resolution to QVGA. This is half the vertical and half the horizontal
resolution of standard VGA. We draw each pixel twice next to each other and
we draw each entire row twice aswell. See section 2.2.1 for clarification as to
why the quadrupling of the output data needs to be done.

As mentioned before, video data is buffered in a FIFO connected to the
VGA controller. Every even row the controller extracts new data from the
queue, sends it to the screen, but also saves it in a local row buffer. On odd
rows the FIFO is unused and data from the local buffer is used instead.

The video hardware also keeps track of the current horizontal and vertical
pixel position, which is used to generate horizontal and vertical synchronization
signals, and for algorithm le blar (see section 4.1.2).

4.1.1 Software accessible registers

Register 0 1sb
[unused] [enable]
D > Koo >
24 bits 8 bits

Register 1 1sb
[unused 1 [Q 1 [P]
- > <———e—- > K-——---- >
16 bits 8 bits 8 bits

Register 2 1sb
[unused 1 [R 1
e > Koo >
24 bits 8 bits

Register 3 1sb
[unused 1 [s]
e > Koo >

24 bits 8 bits

Figure 8: Video hardware register descriptions.

P, @, R and S operation is described in section 4.1.2, enable is activated
when all 8 bits are set (0xFF).
4.1.2 Background generator, algorithm le blar

Algorithm le blar is given by the following formula. P,), R and S are 8 bit
unsigned integers specified by software. It is run at each rising edge of the pixel
clock.

10

Figure 9: Two different backgrounds generated with le blar.

A= (A+ R) mod 256
B = (B +) mod 256

A B
Pivel — ((counth + 6_4)1é count, + E) A P) 50

Multiplying the horizontal and vertical count creates an arc-shaped pattern
in the upper bits which translates into the red color. Incrementing A and B
at each rising edge of the pixel clock makes the value of Pixel for any given
position different from one screen update to the next. Some parameter settings
can lead to percieved continuous movement.

Setting P to zero gives the background the value specified in @, creating an
easy way to set single color backgrounds. Whenever the VGA controller finds a
black pixel (value 0x00) it substitutes it with the current background value.

4.2 Software

The update_vga function is called each iteration of the main loop in our software
application. It is responsible for the dataflow to the VGA controller via the
DMA-unit. It keeps track of how much of the video frame that has been sent
so far, and if there is sufficient avaliable space in the FIFO connected to the
VGA controller, it signals the DMA-unit to send another chunk of data (1280
bytes). Once the first chunk of data has been sent to the FIFO, the VGA device
is enabled by sending the value 0xFF to the first hardware register of the device
(as described in section 4.1.1).

When an entire frame is sent and the last chunk is buffered in the VGA
FIFO, the video memory is updated with new data as dictated by the game
logic. Video data is thus never changed during a screen update, making sure
that we get a tear-free, vertically synchronized image.

A very smart solution for skipping the picture stable. Reminds of the
old ZX Spectrum and Commodore solutions :)

11

Flavius Gruian
A very smart solution for skipping the picture stable. Reminds of the old ZX Spectrum and Commodore solutions :)

5 Input

5.1 Custom input device

Figure 10: Custom input device.

The custom input device we constructed is simply a plastic box with four
arcade buttons in it (see figure 10). The buttons themselves use microswitches
(with pullups, active low) and are connected to four pins of PMOD D.

Since our device utilization was very high (97%, see section 6.2), we did not
have space for a separate PLB device to simply poll and report the state of the
buttons. To still retain the functionality of the input device, we integrated the
polling logic into the VGA controller, and simply read the state from one of its
software-accessible registers.

5.2 PS/2-keyboard

A PS/2 keyboard is used to control various settings in the game such as song
selection, background alteration and waveform setting. We use the built in XPS
PS/2 controller which is polled in the main loop.

Originally, we wrote our own PS/2 controller which was able to keep track
of the state of eight buttons. Due to an increased number of user-specifiable
parameters (which require external inputs), we wanted to use something more
easily modifiable and exchanged it for the standard Xilinx controller, and simply
handle the different actions in software.

6 Device specifics

6.1 Memory

e The CPU uses BRAM blocks for instructions, heap, static data and stack,
the CPU BRAM is a total of 32KB. The VGA FIFO (2048 bytes) also
keeps its data in BRAM.

e The video frame data is placed in Micron RAM and is accessed by the
VGA controller using DMA. The video frame data uses 320 x 240 = 76800
bytes of RAM.

e The DDS samples are kept in distributed RAM for ease of access. These
have a total size of 1536 bytes.

12

e The parsed MIDI files (see 3.2.1) are kept non-volatile PCM memory. All
eleven songs that we currently have take 67366 bytes.

6.2 Utilization

Resource Used | Out of | %
Number of occupied Slices: 2,212 | 2,278 97%
Number of Slice LUTs: 6,440 | 9,112 | 70%
Number used as logic: 6,046 | 9,112 | 66%
Number used as Memory: 271 2,176 | 12%
Number used exclusively as route-thrus: | 123
Number of Slice Registers: 5,588 | 18,224 | 30%
Number used as Flip Flops: 5,583
Number used as AND/OR logics: 5
Number of bonded IOBs: 79 232 34%
Number of RAMB16BWERS: 20 32 62%

Table 4: Various utilization statistics.

7 Main application

Text | Data | BSS | Total
26282 | 2800 | 2062 | 31144
18446 | 2800 | 2058 | 23304
18474 | 2800 | 2062 | 23336
22910 | 2812 | 2058 | 27780
18274 | 2800 | 2062 | 23136

UJOD—‘[\DCOO

Table 5: Binary sizes (bytes).

The main application consists of the sound-generating timer interrupt rou-
tine, and the update_vga function specified in section 3.2.1 and 4.2 respectively.
In addition to this there is some logic to keep the game and music synchronized,
described in section 7.1 below, input handling, as well as some GUI-code to
update score and songnames etc.

The resulting sizes of the binary utilizing various degrees of compiler opti-
mization are shown in table 5. Only the binaries compiled with -03 and -0s
have been thoroughly tested. The heap size is 256 bytes, and stack size is 512
bytes.

13

7.1 Music and game logic synchronization

We want to make sure that the note blocks arrive at the finish line when the
corresponding note is played. In addition we want the blocks to slide in from
the top of the screen instead of suddenly appearing when they are to be played.
To achieve this we scan the song data a few seconds ahead of where the
sound is playing and take note of incoming notes. From doing this we can find
out how long it is until a given note is played, and given the vertical speed of
blocks calculate a vertical offset, ie “where should this block start to arrive at
the finish line in X ms”. This offset will place the initial position of a block
outside (above) the screen to create the smooth effect of blocks sliding in.

7.2 Main loop pseudocode

While forever {
Send data to the VGA FIFO.
If a complete frame has been sent {
Send updated parameters to the background generator.

Move blocks.

Instructive with pseudocode. (a flow
chart would have worked also)

Draw finish line.
Draw gui texts and scores.

Handle input.
b

Poll PS/2 input.
Poll custom input device.

14

Flavius Gruian
Instructive with pseudocode. (a flow chart would have worked also)

8 Conclusions and discussion

We are pleased with the end result. It coincided well with the expectations we
had in the start of the project. If we were given more time to work on it, we
would have written our own MIDI parser (a rudimentary version exists, which
unfortunately only plays one song), and constructed more sophisticated sound
hardware (channel volume control/drums etc). We would also fine-tune the
game logics, and perhaps improve the graphics/background generator a bit.

8.1 Problems and solutions

It was tedious to test and debug interactions between the MB and custom IPs,
we partly solved this by not integrating with the MB until we had thoroughly
tested the component in a standalone manner. This approach also reduced the
penalty of resynthesizing the entire hardware architecture.

We had some problems understanding error messages related to timing prob-
lems. Once we realized we were simply trying to do too many things sequentially
in one clock cycle it was not very hard to split the actions into multiple cycles.

8.2 Learnings

Our Xilinx tools proficiency has greatly improved. We now better under-
stand the practical applications of the various memory areas on the Nexys 3
(BRAM/PCM /Micron RAM). The Spartan-6 has also been partially demysti-
fied, with internal structurings and whatnot. We have also gotten better under-
standing pertaining to the MIDI and VGA standards.

8.3 Contributions

During most of the project (over 90% of the spent time), we have been working
together on the same display, with two mice and two keyboards. It is therefore
very difficult to say exactly who contributed to what.

15

9 References

[1] “Video Graphics Array” http://en.wikipedia.org/wiki/Video_
Graphics_Array.

[2] “Nexys 3 Board Reference Manual.” http://www.digilentinc.com/Data/
Products/NEXYS3/Nexys3_rm.pdf.

[3] “IBM VGA Technical Reference Manual.” http://www.mcamafia.de/pdf/
ibm_vgaxga_trm2.pdf.

[4] “PS/2 Keyboard Interface.” http://www.computer-engineering.org/
ps2keyboard.

[5] “MIDI File Format.” http://www.sonicspot.com/guide/midifiles.html

[6] “Piano key frequencies.” http://en.wikipedia.org/wiki/Piano_key_
frequencies.

A good report, full with details, even if a bit brief in parts.
The project in general is very good, with an impressive final
result. Well done!

16

Flavius Gruian
A good report, full with details, even if a bit brief in parts. The project in general is very good, with an impressive final result. Well done!

A Installation instructions

These instructions are written for Adept 2.3. Switch to the Memory tab and
select the file songs.bin in the Write File to Memory section, leave BPI Flash
selected and press Write. When finished, switch to the Config section and
program the Nexys 3 with the midimonster.bit file.

The 8-bit soundstream is assigned to the data pins of PMOD A. Use a
R2R-ladder or similar to convert to an analog signal. The main game input
is delivered from four pins of PMOD D. You probably want to use a couple of
microswitches to play, the signals are active low. The pins are assigned according
to table 6.

Pin | Bit

T12 7

Vi2 | 6 Pin | Bit
N10 | 5 Gl1 | 3

P11 4 F10 | 2

M10 3 F11 1

N9 2 El1 | O

Ul1 1

Vil | 0

Table 6: Audio out (left) and input (right) pin assignments.

Connect a standard USB-keyboard and use F1-F11 to switch between the
available tracks, F12 to change sound waveform and Space to generate a new
random background. Backspace generates a new backdrop base-color, ’, *
generates a new mask (filters out color components from the final byte repre-
sentation of the pixel), Return and Right shift generate new modifiers (which
‘animate’ the background).

17

Song data

Timer

interrupt

PS/2 controller

C Arcade buttons)

Legend

Sound
generation

J\
Update VGA

Software routine

update tone generators

start transfer

Sound HW

channel mix

Waveform LUT

2

image data

DMA

image
data

VGA

hsync, vsync,
RGB values

update background parameters

Hardware

C Data source)

Data flow

Control signal

>

1sds g

MOITAIIAO IO

