
 
 
 
 

 

VPN on NEXYS2
 
 
 

EDA385
Design of Embedded Systems: 

Advanced Course

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mentor:
 

Flavius Gruian
(flavius.gruian@cs.lth.se)

 

 Project Participants:
 

Dan Kvelstad
(dt06dk5@student.lth.se)

 
Michael Gissing

(int11mg3@student.lth.se)
 

Leo Bärring
(et06lb2@student.lth.se)

 
 



System Description

The Big Picture
This is a project about developing a proof-of-concept system for establishing an encrypted 
tunnel over an IP network. An encrypted tunnel is a way of safely connecting two Local Area 
Networks via an insecure and possibly very large IP network. This will result in an entity 
called Virtual Private Network (VPN) in which the clients believe that there are two sub-
networks connected via a single router. This is visualised in picture 1 below.
 

figure 1: System Description
 
The IP routing network, i.e. Internet, is not trusted and some protection of the tunnelled 
traffic between LAN1 and LAN2 is desired. This will be done according to the IPsec 
standard and should be compatible with of-the-shelf systems using the same standard. This 
process is not known by, nor cared about, the clients belonging to the separate LAN.
 
 



Tunneling
The IP packet transmitted from a LAN transports a higher level protocol such as TCP. The 
actual protocol above IP is irrelevant for this project since they will all be treated as payload.
 
When our system receives a clear, non-encrypted, data packet it will create a new packet 
with a new Ethernet, IP, ESP information and authentication data. It will then encrypt the 
received packet and attach this encrypted packet as payload to the new packet. This 
principle is called encapsulation and is presented in figure 2.
 

figure 2: Encapsulation
 
The ESP header contains information about what encryption algorithm was used to encrypt 
the payload and the authentication data is used to ensure that the packet has not been 
tampered with. The new packet is then sent over the insecure network to the other VPN 
server. Once the other end receives the packet it will strip away the wrapper packet and 
send the original IP packet into its LAN.
 
It is not the actual algorithm or keys that will be transferred in the ESP header. It only carries 
a reference to which was used. The actual means to decrypt the packet is stored locally 
at the receiver in a so-called a Security Association (SA) that corresponds to a SA at the 
senders. The receiver has a specific SA for every sender and store all of these in a local 
database called Security Association Database (SAD).
 
Security Associations store parameters like the cryptographic algorithm, mode and key. A 
SA is identified by the Security Parameter Index (SPI) that is part of each IPsec package. 
A two way communication requires at least two SA since each can only contain the 
parameters for one direction.
 
SA are designed to be configured via a protocol called Internet Key Exchange (IKE). 
This project will not implement this protocol due to time constraints and will setup the SA 
manually instead. Another restraint will be that the system only supports one bi-directional 
tunnel between two peers and by extension will only contain two SA. This will result in the 
concept of SAD being naively implemented.
 
The IPsec standard supports a multitude of encryption algorithms but this system will only 
support the encryption algorithm DES-CBC. To add other standards can be seen as trivial 
but time and space consuming. 
 
Authentication will be implemented in software using the HMAC-SHA1-96 standard.
 
 



Hardware Design
The project will be started up using a design as in the image below.

figure 3: System Design
The start-design consists of two processors. The most important one will be referred to 



as brain and is responsible for flow control of the system. The second processing unit is 
entitled emulator and will emulate hardware accelerators until such a time that they can 
be implemented using VHDL. Brain should not be able to tell if the system uses hardware 
accelerators or the emulator core by other means than of measuring the time required for 
encrypting/decrypting (*crypting) packets. 
 
The two BRAM blocks that are common between the brain and the *cryption system will be 
divided into three logical zones. The first being a control word that states if the memory is in 
use and how. This zone is the only mean of communication for the brain and the *cryption 
system. The second and third zone contains the incoming and the outgoing versions of a 
packet. The structure is the same for both BRAM. The following flowchart demonstrates this:
 

figure 4: Brain and *cryption system interaction
 
This design will lead to an incrementally implementable system that is also robust. It also 
enables an easy and fair comparison of time requirements for emulation and hardware.



Possible Improvements
The system is a skeleton of the IPsec standard and has many areas of improvements. 
The most important addition would be to implement the authentication algorithm SHA1 in 
hardware instead of letting the brain calculating it. This is a feature that might actually be 
implemented, time allowing.
 
Another important improvement area would be the rudimentary implemented TCP/IP stack. 
Installation is now complicated due to static configuration and the ARP and DHCP protocols 
would significantly ease the installation process. 
 
There are functional limitations to this implementation of IPsec as well. The encrypted 
packet might become fragmented in the large IP network. This causes problems since the 
whole packet is needed in order to decrypt it and send it on. IPsec contains recommended 
ways of dealing with this, using a sliding window, but it requires a considerable 
implementation effort. This system will simply drop fragmented IP packets.
 
The encryption could be improved by supporting more protocols such as 3DES, AES and 
Blowfish. More protocols and capability would cause more SA to be generated and the 
configuration of these should really be done via IKE. More SA also means that a system for 
storing them is needed and a SAD must be implemented. Further improvements could be 
to allow configuration by means of SD cards, USB thumbdrives or RS232 and credentials 
stored on smart-cards. These are all functionality that commercial systems usually contains.
 
This specific system could also benefit from completely removing the Brain microblaze 
from the IP packet data path. Allowing the system to do all *cryption autonomously. This is 
plausible here since the control path is simple. It should be noted that as the implemented 
features of IPsec increase, so does the control complexity. This increase would most likely 
render this optimization moot.

 

 



Time Plan
1. Oral Presentation (1 day, Michael)
2. Project Proposal (2 days, Dan)
3. FPGA hardware configuration (3 days, Dan)

a. VHDL modules are replace by emulator microblaze.
4. Ethernet on both NIC’s (5 days, Leo)

a. set Control Registers
i. via SPI, i.e. Microblaze

b. set PHY registers
i. can only be accessed through MIIM implemented in the MAC.

c. make sure that the Microblaze processor works with the RAM in PModNIC
i. write data
ii. read data

d. working Ethernet functionality
i. send frames

● monitor via a network sniffer
ii. receive frames

● print to UART, when verified: remove this.
5. Internet Protocol (3 days, Dan)

a. assign static IP address
b. sending packets

i. monitor via a network sniffer.
ii. no encryption.

c. receiving packets
i. print to UART, when verified: remove this.

d. on both NIC
6. Tunnelling (3 days, Dan)

a. encapsulation, i.e. append second IP header.
b. monitor connection status via UART, led or 7-segment display.

7. Security Associations (2 days, Michael)
a. static setup located in software BRAM.

8. Software Encryption (5 days, Leo)
a. NULL and DES encryption
b. Encrypt the data using Microblaze

i. Add ESP (IP protocol 50) header/trailer
c. Decrypt the data using Microblaze

i. Remove ESP (IP protocol 50) header/trailer
9. Validation (5 days, Leo)

a. System should now be operational, but slow.
b. Test towards of-the-shelf system.

10. Hardware Encryption (5 days, Michael)
a. Implement VHDL module for encryption (NULL and DES).
b. Implement VHDL module for decryption (NULL and DES).

11. Validation (5 days, Michael)
12. Project Report (2 days, Dan)
13. Project Presentation (1 day, Michael)

http://en.wikipedia.org/wiki/Security_association
http://en.wikipedia.org/wiki/Security_association
http://en.wikipedia.org/wiki/Security_association
http://en.wikipedia.org/wiki/Security_association

