
VT100 { Project Report

EDA385 { Computer Science { LTH

Mattias Jernberg, D06 (dt06mj4@student.lth.se)
Andreas Lord, D08 (dt08al1@student.lth.se)
Bj�orn Uusitalo, D06 (tn06bu0@student.lth.se)
Supervisor: Flavius Gruian (Flavius.Gruian@cs.lth.se)

November 8, 2010

Abstract

This projects implements a VT100-like serial terminal using a Nexys-
2 FPGA board, VGA display, and a PS/2 keyboard. It features the
most common subset of the ANSI escape codes de�ned in the ECMA-48
standard, interrupt based input, serial port IO and a character-based
video controller. The �nal prototype is capable of running most com-
mon terminal applications supporting the ECMA-48 standard, such as
{ but not limited to { top, less and vim.

2

Contents

1 Introduction 1

2 System design 1

3 Protocols 2

3.1 ECMA-48 . 2
3.2 PS/2 . 3
3.3 VGA . 4
3.4 RS232 . 5

4 Hardware 5

4.1 VGA . 5
4.1.1 Output generation . 5
4.1.2 Bu�ering . 6

4.2 UART . 7
4.3 PS/2 . 7

5 Software 7

6 Implementation problems 9

7 Result 9

8 Contributions 10

A Installation 11

B Downloadable resources 11

C XPS Block diagram 12

D Hardware diagrams 13

E Gallery 14

i

1 Introduction

This project aims to produce a serial terminal supporting ANSI escape codes
for formatting output and supporting a keyboard for output back to the
host device. Support is available for colourizing output, cursor placement
and inserting text at any point on the screen.

The VT100 was a video terminal that was made by Digital Equipment
Corporation (DEC) in 1978. It connected to a host computer (read: main-
frame) over a serial connection and allowed display of formatted text as well
as user input. The original standard for controlling the output was speci�ed
in ANSI X3.64, which later became ECMA-48.

The ECMA-48 is a standardization of the escape codes (usually known as
ANSI escape codes) which are interpreted by the terminal. The wide array
of control codes and display modes, as well as its extensibility, has allowed
it to stay relevant to this day and is enough to con�gure most embedded
equipment with a text-based serial connection.

Today most terminals are served using terminal emulation software, free-
ing you from the hardware terminal and enabling use of any computer to
interface to a serially connected device. VT100 emulation can be seen as a
common factor in pretty much every such software.

2 System design

The general system design of our system is very similar to what is found in
a description of a normal VT100:

� VGA output

� Keyboard input

� Serial connection

� Microcontroller

In our case however we use standard connections to all I/O instead of,
like the VT100, provide them as part of the hardware. A PS/2 port provides
an interface to the hardware and a HD15 VGA connector allows any VGA
screen to be connected. The microcontroller used is the Xilinx MicroBlaze
which ties together communication between the peripheral devices. Our �nal
design is shown in �gure 1. This is nearly identical with our proposal. The
shared video memory has been de�ned as being outside the VGA, whereas
the original integrated the memory inside the VGA controller. Secondly, the
PmodAMP for audio beeps has been abandoned as the hardware was not
available.

1

PLB

MicroBlaze

VGA Controller

Video RAM

Row buffer

Font ROM

Color

Pixel on/off

C
olor se lect

VGA out

UART PS/2Pmod
AMP

Copy logic

Figure 1: Architecture for the implementation

3 Protocols

As this is a system which is designed to interact with standardised periph-
erals it is necessary to follow a set of protocols detailing the interaction
speci�cs of these peripherals.

3.1 ECMA-48

The ECMA-48 standard de�nes the speci�cs of terminal emulation for 7 and
8 bit long characters. In addition to normal characters it de�nes control
sequences, functions, and strings that can be used to control the output to
the terminal. In this document we'll be describing the 7 bit protocol since
it's the one we're using.

The normal way to control the output is through Control Sequences. A
control sequence has the following form:

CSI P...P I...I F

Where the Control Sequence Inducer (CSI) is the byte 0x5B, Parameter

2

bytes (P) are bytes between 0x30-0x3F, Intermediate bytes (I) are between
0x20 and 0x2F and Final Bytes (F) are between 0x40-0x7E.

The parameter bytes encode the parameters in string of parameters in
string representation. 0x30-0x39 represents the numbers 0-9, 0x3A acts as
a separator between integer and decimal parts, and 0x3B separates param-
eters. This maps well to the ASCII table where 0x30-0x39 maps to '0'-'9'
and 0x3A, 0x3B maps to ':' and ';' respectively.

Control sequence provides a call to a control function which is speci�ed
by the intermediate byte and the �nal byte. The parameter bytes specify
the arguments to the function.

It's also possible to control the formatting through Independent control
functions and control strings. The independent control functions are mostly
aimed at controlling the device written to or the connection to the host.
Control strings are prede�ned commands passed through the terminal to
the receiver without a prede�ned meaning in ECMA-48. Since neither is
implemented in our project we will not describe them in detail.

3.2 PS/2

A keyboard connecting via the PS/2 connector communicates using the
protocol devised by IBM for their PC AT computer. This protocol consists
of 8 bit commands and so called scan codes which are transferred over a
synchronous serial connection.

The connector to the keyboard consists of 4 terminals, Vcc, Ground,
Clock and Data. The host connector contains pull up resistors on Clock and
Data, keeping them normally high. The keyboard then pulls the signals to
low to send data. The keyboard clocks bits by pulling the clock low and
then releasing it making it return to a high state. First a start bit with
value 0 is sent, followed by 8 data bits, 1 parity bit and a stop bit (a 1).

The host can also send data to the keyboard by forcing the clock to low
for at least 60�s. This tells the keyboard to start clocking, expect a start
bit and then the start of data. After the sequence of data the keyboard
acknowledges by pulling the Data line low for one clock cycle.

The host to keyboard sending has priority. Thus whenever the host forces
the clock to low to keyboard must abort or inhibit its current transmissions
to accept data from the host. To perform this safely the keyboard has a
small bu�er internally for storing key presses. This can be used to stop data
from coming if the host cannot process any more at this time. By forcing
the clock to low and when releasing it keeping Data high (thus not sending
any start bit) the keyboard will abort the receiving of data and proceed to
send any data in its bu�er.

For an AT compatible keyboard each key has a de�ned scancode of at
least 8 bits. The scan code is sent when the key is pressed as well as on reg-
ular intervals as long as the key is held down. This key repeat functionality,

3

PgUp
0E7D

3
26

Ins
E070

Home
E06C

E
24

R
2D

Q
15

W
1D

6
36

7
3D

4
25

5
2E

U
3C

I
43

T
2C

Y
35

0
45

+
4E

8
3E

9
46

Å
54

¨
5B

O
44

P
4D

´
55

←
66

D
23

F
2B

A
1C

S
1B

J
3B

K
42

G
34

H
33

Ä
52

'
5D

L
4B

Ö
4C

X
22

C
21

<
61

Z
1A

N
31

M
3A

V
2A

B
32

-
4A

,
41

.
49

⇑
59

 ↵

5A
Caps Lock

58

↹

⇑
12

Ctrl
14

↹
0D

Alt
11 29

AltGr
E0 11

Ctrl
E0 14

F1
05

F2
06

ESC
76

F5
03

F3
04

F4
0C

F8
0A

F6
0B

F7
83

F9
01

F12
07

F10
09

F11
78

PgDn
E07A

Del
E071

End
E069

↑
E075

→
E074

←
E06B

↓
E072

2
1E

½
0E

1
16

Figure 2: Scancodes on a swedish keyboard layout

called typematic, is on by default in keyboards but can be con�gured by
sending commands to the keyboard. When a key is released the keyboard
sends the byte F0 followed by the scan code. The scancodes and the cor-
responding keys on a keyboard with Swedish layout can be seen in �gure
2.

3.3 VGA

The VGA output signal is very simple; it consists of three analogue channels,
one for each colour red, green and blue. In addition to these there are two
signals named vertical sync (Vsync) and horizontal sync (Hsync). These are
used to tell the monitor when a new line or page is to be started.

The signal is based on how CRT monitors work. A cathode ray is guided
using an electrical �eld which makes it sweep across the screen. As the hori-
zontal voltage increases in this �eld the ray sweeps across the line outputting
the colour which is currently put on the inputs. Hsync serves to discharge
to component supplying voltage to the electrical �eld. This is the amount of
time that Hsync is active. On a CRT there is also a part of the screen that
is hidden by the casing. To keep image stability there are two areas, one at
the beginning and one at the end named front and back porch respectively
which do not contain data.

All this also applies to vertical order as well, with Vsync instead of
Hsync and a di�erent timing. Modern LCDs instead incorporate a chip

4

F
ro

n
t p

o
rch

B
a

ck p
o

rch
H

syn
c

Figure 3: VGA scan to draw lines

which detects this timing and syncs with the incoming signal to convert
each pixel to a pixel on the LCD panel.

3.4 RS232

For serial communication the RS232 protocol is used. It is an asynchronous
protocol and needs that both sides have previously agreed on a set data rate
to properly communicate (since clock speeds are otherwise out of sync). The
actual serial transfer protocol is not relevant for the implementation and is
handled by a readily available chip. Thus it is not described further here.

4 Hardware

4.1 VGA

The VGA controller is the only core that was custom created. It implements
a 640x480 VGA signal at 60 Hz using a pre-made VHDL module available
from Digilent[4]. To generate characters from text a ROM is used to store
a font with characters 8x16 pixels wide. Each character is represented in
this ROM using 16 bytes, one for each row of the character. Each bit then
represents the column. The output is done by two components, a pixel
generator and a copying module lifting data from the shared video memory.
Simpli�ed diagrams of these are available in appendix D.

4.1.1 Output generation

Since the counters operate on pixel positions it is necessary to translate this
into two parts, the position of the current character and then the pixel in
that character which must be drawn. As the characters have both a width
and height as a power of 2, this is easily done by using the least signi�cant

5

Output bit Source bit(s)

Red 0 0
Red 1 red
Red 2 red & hi

Green 0 0
Green 1 green
Green 2 green & hi
Blue 0 blue
Blue 1 blue & hi

Table 1: Output colour conversion

bits as the pixel in the character and the rest of the bits as a position telling
us which character position in the frame to use.

This makes the pipeline quite straight forward. A memory is used to
store 16-bit words describing which characters to draw. This is split in
colour and character number. The character value and row number is fed
into the font ROM and from this the output pixel is selected using the
current column.

The pixel value selects if either background or foreground colour is to be
used, if reverse is on this is inverted so that foreground is background and
vice versa and �nally a component tests if the current position is equal to
the set cursor position which inverts the choice once again.

The output of the VGA signal on the board is 8 bits and capable of gen-
erating 256 colours. However as part of the standard we only need 7 colours
(and high intensity for the foreground colour) which halves the necessary
bits for storing colour values. To convert these colours with 1 bit for each
colour to 8 bits, some trial and error resulted in the conversion shown in
table 1.

A simpli�ed illustration of this pipeline can be seen in �gure 8. In
this �gure, the output conversion as well as reversal of the colour has been
removed to improve readability.

4.1.2 Bu�ering

When drawing to the screen, characters are drawn one pixel row at the time
and all characters on that row are drawn before the next row of pixels are
begun (as illustrated in �gure 4). If the software changes the contents of
the memory often this can lead to strange output on the screen while done.
To prevent this, a bu�ering mechanism is needed. The two choices are
the simple full bu�ering, which doubles the memory requirements, or row
bu�ering, which is the minimum amount that can be bu�ered to avoid this
problem. This design uses a row bu�ering model since the choice at design

6

time was to preserve memory in order to avoid the need for a redesign late
in the project should it be shown that there were an insu�cient amount
of BRAMs in the FPGA. This result in a more complex set of states that
needs to track both Vsync, Hsync, addresses to both bu�ers and when there
is an output signal (as there are multiple Hsync signals when we are not
outputting data on the top of the screen). This design is show in �gure 7.

Figure 4: Drawing order for
pixels on the display

The general design of this copy logic is a
direct copying of the current row from the
shared RAM into the row bu�er. This is
driven by two counters, one for addressing
each of the memories. Since the main mem-
ory is 32 bits wide a multiplexer is used
to divide this into 16 bit words which the
hardware works with. The main memory
counter can be initialised to either address 0
which contains 4 8-bit registers that control
the hardware, currently they de�ne which
row that is used as row 0 and the row and
column for the current cursor position.

The state machine initialises on Vsync and starts by loading address 0 in
the main counter to load the registers. It then loads the start row and waits
for Hsync. Hsync indicates that a new set of 80 words should be loaded
into the bu�er. Afterwards it blocks until it detects an output signal to the
screen and returns to idle mode waiting for either Hsync or Vsync.

4.2 UART

For serial communication a 16550-compatible UART is used. This was cho-
sen because its known features giving access to mainly FIFOs but also hand-
shaking and
ow control signals immediately in hardware. The latter fea-
tures was shown not usable however, as the board does not connect these
pins to the FPGA. The UART in this project is provided by Xilinx and
connects to the MicroBlaze via the PLB-bus.[9]

4.3 PS/2

The PS/2 interface is provided by a pre-made core from Xilinx which con-
nects to the PLB bus.[6]

5 Software

The software was written in C and can be split into three major parts.
Initialisation, interrupts and the ECMA parsing which can be seen in �gure
5.

7

The initialization sets up the hardware, and prints a welcome screen.
The interrupts are triggered whenever the PS/2 keyboard sends a scancode.
These are then decoded, keeping track of special characters and a few states,
such as caps lock. Once decoded the corresponding commands or characters
are sent to the host over the serial port.

The ECMA routine decodes the response of the host and updates the
screen output accordingly. As seen in �gure 5 we handle three di�erent kinds
of input: normal characters, special characters and escape codes.

Normal characters are just printed at the correct position on the screen.
Special characters such as newline and backspace are interpreted correctly,
for example 'nn' will cause the software to clear the next row, scroll the
screen if necessary and put the cursor at the �rst position of that row.

An escape sequence is more complex, the sequence may have a number
of parameters strings and/or a number of intermediary bytes before it ends
with a �nal byte. In practice the escape sequence is a lot more complex than
needed, no applications tested use intermediate bytes and the parameters
only contains integers. This allows us to implement a simpli�ed parsing of
escape sequences handling a �xed number of integer parameters. For debug-
ging reasons a single intermediate byte is interpreted and stored, however
no function makes use of this.

serial_getchar()

special
character?

escape
code? read sequence

put VGA

PS/2 interrupt

Interpret
single character Interpret

Update state

lookup serial_putchar()

Yes

No No

Yes

Initialize
Hardware

Figure 5: Drawing order for pixels on the display

8

6 Implementation problems

Design-wise our largest problem was is that we were too careful. Our design
decisions were to forego a full double bu�er of the video memory to avoid
having to go o�-chip for more memory. To further limit memory consump-
tion we limited ourselves to 2 bytes per character and removed features such
as blinking and underlined text for this reason. Given the current mem-
ory usage, 3 bytes would allow for more formatting and result in a minimal
increase in device utilisation.

During the implementations we ran into a few hardware problems, where
a slow point in the execution causes hardware bu�ers to over
ow. This was
particularly visible in the PS/2 controller as the Xilinx PS/2 core does not
implement the
ow control described in section 3.2 and only bu�ers a single
byte. The biggest culprit causing these problems were the debugging as
printing to the JTAG terminal (provided by the MicroBlaze debug module)
could sometimes take seconds to transfer the text. We did not �nd a good
solution to this since no part of our input hardware were able to do
ow
control and thus only could over
ow.

The Xilinx Platform Studio also provided its fair share of grief when
migrating an ISE project into XPS as an IP core. When creating a custom
core as we did using netlists from the Xilinx LogiCORE wizard intermixed
with VHDL and on top of that connecting it to a bus interface that is not
creatable using the peripheral creation wizard in XPS one have to consult
the reference manual for the �les describing peripherals[8]. This format is
extremely versatile, and allows for the reuse of modules from other cores.
Thus if a copy is made of a core it does, by default, use the hardware design
from the old core without warnings. Also, while there is a version number
associated with each core, XPS does not allow you to easily replace a core
with a newer version, even if their connections match exactly. This lead to
what was expected to take 2-3 hours for integration, took a whole day of
work. Therefore a work
ow doing design in XPS, exporting to ISE to build
the cores and then updating the software using the SDK would be a more
streamlined method if possible. Any completed cores could then as a last
step be ported into XPS.

7 Result

The �nished prototype works well and has been tested with major software
such as ncurses, vim, zshell as well as standalone hardware that utilises
escape codes to format a user interface. Currently only a single known issue
exists, however its cause is unknown. The bug does not crash the device
but merely garbles the output until a clear or similar redraw of the screen is
performed. The �nal device utilisation is shown in table 2. The software is

9

placed in a 32 KByte BRAM of which it uses 21:7 KByte. The �nal software
has been compiled using GNU CC and using -O2 optimisations and most
debugging routines has been disabled (notably this removes the dependency
on xil printf).

8 Contributions

During the project each member had a generalized area of \expertise", PS/2
was done by Bj�orn, ECMA by Andreas and VGA by Mattias. The full
ECMA decoding was the largest part of the project. As it was done entirely
in software it was trivial do solve on an as needed basis which resulted in
gradual evolution by the team member that found out they needed some
new instruction.

Total VGA core

Slices 3449 113
LUTs 3120 109
Flip Flops 2156 90

16K RAM Blocks 22 2
Multipliers 4 1

Table 2: FPGA device utilization

10

A Installation

Using a Nexys2-1200 board, connect a VGA display, a PS/2 keyboard and
your serial device to the board. Make sure the device you are using is not
transmitting on the serial port (if possible, turn it o�).

Using a Nexys2-1200 FPGA board, download the bit �le to your board.
Use vt100_CCLK.bit for programming the PROM and vt100_JTAGCLK.bit
for downloading directly to the FPGA chip. If programming the PROM,
power cycle the board after completion. You will now see an instruction
screen helping you get started. The baud rate is con�gurable using the
switches on the board; each switch is mapped to a unique speed. No switches
enabled mean 1200 baud and then each switch is mapped in order to 2400,
4800, 9600, 19200, 38400, 57600, 115200, 230400 baud. If multiple baud
rates are selected the highest will be used. As you select a baud rate it will
be presented to you on the screen if you are unsure. Be advised that selecting
230400 baud has not been proven safe and might lead to unexpected lockups.

When satis�ed, start your device using the same baud rate. The baud
rate will now be locked for the rest of the session (you must press BTN0 to
reset the board and tell it to load a new setting).

B Downloadable resources

http://users.student.lth.se/˜dt06mj4/vt100/vt100_CCLK.bit
http://users.student.lth.se/˜dt06mj4/vt100/vt100_JTAGCLK.
bit

Bit �les for programming the Nexys2-board, see also appendix A.

http://users.student.lth.se/˜dt06mj4/vt100/report.zip
Report source, with sources for graphics used. Permission granted to use

and modify these �les under CC-by-SA 3.0.

http://users.student.lth.se/˜dt06mj4/vt100/vt100.zip
Xilinx Platform Studio hardware project and external tools. The direc-

tory structure is as follows:

fpga/master The main Xilinx Platform Studio project

fpga/master/VT100 C code running on the MicroBlaze

fpga/vga ise Development project for the VGA hardware using Xilinx
ISE

support/vgafont Converter tools for PSF1 font �les (Linux console fonts)

11

http://users.student.lth.se/~dt06mj4/vt100/vt100_CCLK.bit
http://users.student.lth.se/~dt06mj4/vt100/vt100_JTAGCLK.bit
http://users.student.lth.se/~dt06mj4/vt100/vt100_JTAGCLK.bit
http://users.student.lth.se/~dt06mj4/vt100/report.zip
http://users.student.lth.se/~dt06mj4/vt100/vt100.zip

C XPS Block diagram

bram_block
main_bram

PORTAPORTB

lmb_bram_if_cntlr
dlmb_cntlr

SLMBBRAM

lmb_bram_if_cntlr
ilmb_cntlr

SLMBBRAM

bram_block
video_ram

PORTAPORTB

lmb_bram_if_cntlr
video_ram_cntrl

SLMBBRAM

mdm
mdm_0

SPLBMBDE

xps_gpio
Switches_8Bit

SPLB

xps_gpio
Push_Buttons_3Bit

SPLB 00

xps_gpio
LEDs_8Bit

SPLB

xps_intc
xps_intc_0

SPLB 0

xps_ps2
xps_ps2_0

SPLB 10

xps_uart16550
RS232_PORT

SPLB

SLAVES OF mb_plb

microblaze
microblaze_0

DLMBILMB

DPLBIPLB

DEBUG

0

PROCESSOR

dlmb

microblaze_0_mdm_bus

ilmb

mb_plb

KEY
SYMBOLS

bus interface

shared bus

Bus connections

master or initiator

slave or target

master slave

monitor

External Ports

input

output

inout

Interrupts

x
Interrupt
Controller

x
Interrupt
Target

yxInterrupt
Source

X = Controller ID
Y = Interrupt Priority

COLORS
Bus Standard

DCR

FCB

FSL

LMB

OPB

PLB

SOCM

Xilinx P2P

USER P2P

SPECS
EDK VERSION 12.2

ARCH spartan3e

PART xc3s1200efg320-4

GENERATED Thu Nov 4 14:09:35 2010

video_cntlr

Figure 6: Block diagram

12

D Hardware diagrams

11

16

7
8

16

11

1610

8

11

D

enable
load

value

Counter

31:24
23:16
15:8
7:0

A
D

w
e

Row buffer memory
31:16
15:0

VGA_MEM_START: 0x2

0
1

80

in2

in1

eq==

Main memory

10:1
0

E
Q

D

REG_ADDR: 0x0

CE

value
counter

1 0

OE

vsync

hsync
to_registers

read_registers

copy

to_top

State_Machine

A D

2
0

Figure 7: VGA row bu�ering component

3

7

7

3

11

4

16

10
4

8

4

9:4
3:0

9:3
2:0

14:8
7:4
3:0

A DA D

7
6
5
4
3
2
1
0

QD

0
1

0
7

FONT ROM

10:7
6:0

Row buffer

column row

vsync

hsync

VgaCtrl640_60

O
u
t
p
u
t
c
o
l
o
r

Figure 8: VGA output component

13

E Gallery

14

References

[1] Digilent Inc. Digilent Plug-in for Xilinx 12.x Tools User Man-

ual. http://fileadmin.cs.lth.se/cs/Education/EDA385/
HT10/documents/chipscope_digilent/Digilent_Plug-in_
Xilinx_v12.pdf.

[2] ECMA. ECMA-48: Control Functions for Coded Character Sets. ECMA
(European Association for Standardizing Information and Communica-
tion Systems), pub-ECMA:adr, �fth edition, June 1991.

[3] Digilent Inc. Master ucf �le for the nexys2-1200. http:
//www.digilentinc.com/Data/Products/NEXYS2/Nexys2_
1200General.zip.

[4] Digilent Inc. Vga controller reference design. http://www.
digilentinc.com/Data/Documents/Reference%20Designs/
VGA%20RefComp.zip.

[5] The Linux man-page project. console codes(4).

[6] Xilinx. LogiCORE IP XPS PS2 Controller (v1.01b), april 2010. DS707.

[7] Xilinx. MicroBlaze Processor Reference Guide, jul 2010. UG081 v11.1.

[8] Xilinx. Platform Speci�cation Format Reference Manual (EDK 12.2),
jul 2010. UG642.

[9] Xilinx. XPS 16550 UART (v3.00a), may 2010. DS577.

15

http://fileadmin.cs.lth.se/cs/Education/EDA385/HT10/documents/chipscope_digilent/Digilent_Plug-in_Xilinx_v12.pdf
http://fileadmin.cs.lth.se/cs/Education/EDA385/HT10/documents/chipscope_digilent/Digilent_Plug-in_Xilinx_v12.pdf
http://fileadmin.cs.lth.se/cs/Education/EDA385/HT10/documents/chipscope_digilent/Digilent_Plug-in_Xilinx_v12.pdf
http://www.digilentinc.com/Data/Products/NEXYS2/Nexys2_1200General.zip
http://www.digilentinc.com/Data/Products/NEXYS2/Nexys2_1200General.zip
http://www.digilentinc.com/Data/Products/NEXYS2/Nexys2_1200General.zip
http://www.digilentinc.com/Data/Documents/Reference%20Designs/VGA%20RefComp.zip
http://www.digilentinc.com/Data/Documents/Reference%20Designs/VGA%20RefComp.zip
http://www.digilentinc.com/Data/Documents/Reference%20Designs/VGA%20RefComp.zip

	Introduction
	System design
	Protocols
	ECMA-48
	PS/2
	VGA
	RS232

	Hardware
	VGA
	Output generation
	Buffering

	UART
	PS/2

	Software
	Implementation problems
	Result
	Contributions
	Installation
	Downloadable resources
	XPS Block diagram
	Hardware diagrams
	Gallery

