2D Physics engine

Fredrik Bondza, dt06fb2
Simon Lindgren, dt05sl0

9 September 2009

Innehall

1 Description

2 Physics engine

2.1 Gravity
2.2 Collision detection
23 World

3 I/0 processes
4 Memory
5 Possible improvements

6 Time and task planning

NN NN

1 Description

The goal is to implement a simple 2D physics engine on a Digilent Nexys2
FPGA board. The engins should be capable of simulating basic physics. For
example all objects in the existing world should be affected by gravity.

2 Physics engine

2.1 Gravity

All objects which is part of the simulated world should be affected as in the
real world. This means that all objects will be accelerated towards the bottom
of the screen which will represent the ground in the real world.

2.2 Collision detection

In the real world two objects can not occupy the same space at the same time
nor can they pass right through eachother. In order to prevent this, collision
detections is necessary to simulate in a physics simulator.

Everytime a collision between two objects occur the objects shall react to the
collision. For example when a ball hits the ground it bounces back up again
and the world does not move since the difference in mass is extremely large.
When a shape is dropped in the world it will bounce of the ground and
eventually, after a few bounces, stop and stay on the ground. This means that
with every collision the objects looses some of its kinetic energy, this must also
be handled otherwise all objects will keep on moving forever.

2.3 World

The simulated world will be a closed world which means that none of the
objects existsing in the world should be able to fall through the world. In real
life most objects are substantially smaller and lighter than the earth. Since the
mass of the world is much larger than that of any objects which will be
simulated in the world a collision between the world and an object will not
affect the world.

3 1/0 processes

There will be two different 1/O processes for the engine to handle, an input
and an output.

The input will come from a keyboard. An keyboard event will generate an
interrupt which will then be handled by the processor.

The output will be sent to a VGA controller. Since 60Hz is a refresh rate
supported by most screens the graphical representation of all the objects in the
physics engine should ideally be shown to the user 60 times per second. The
VGA controller will be implemented as an hardware IP for high performance.

4 Memory

Since the physics engine will need to draw the simulation process as an output
it will need to store matrices in the memory. The matrices will be of size
640x480 pixels to match the resolution of the VGA output.

The on-chip memory, BRAM, will not be large enough to store the matrices
needed to match the VGA resolution.

The SDRAM on the FPGA board will be used to store information about the
images instead of the BRAM since the SDRAM is larger than the BRAM.
Using the SDRAM is slower than the on-chip BRAM but since the SDRAM
has a read /write cycle of just 70ns it should be fast enough to store all the
data needed.

5 Possible improvements

It might be possible to improve preformance by using more than one
processor. For example the engine performance could benefit from being run
on two processors where one could handle input and output and the other
processor could handle all physics calculations.

By implementing as many of the computational intensive parts of the physics
simulation as possible in hardware the of the physics engine could be increased.

To reduce the amount of calculations needed for each simulation step all
objects could be divided into two separate groups. One group containing all
moving objects and the other group contains all non-moving objects. Since the
non-moving objects will never hit another object it is not necessary do check
this object against collision with all other objects. Instead every moving object
is checked for collision against all objects in the world.

It could be possible to reduce the amount of data sent from the processor to
the VGA controller by just sending information about object positions instead
of sending the whole matrix which the VGA controller should draw.

6 Time and task planning

The following table contains all the major parts of the project and the
estimated working time needed for each task.

Task

Time estimation

Responsible

Physics engine 10 days Fredrik Bondza
VGA / Keyboard controller 10 days Simon Lindgren
Create GUI 7 days Fredrik Bondza
Port physics engine to board | 4 days Simon Lindgren
Hardware acceleration 7 days Simon Lindgren
Final report and presentation | 7 days Fredrik Bondza

