
Squirrel
Hunter

Balaji Sathyanarayanan (sx08bs4@student.lth.se)
Can Bilgin (sx08cb0@student.lth.se)

Rakesh.M.G (sx08rg5@student.lth.se)

1

http://embedded/sx08bs4@student.lth.se
mailto:sx08rg5@student.lth.se
http://embedded/sx08cb0@student.lth.se

Abstract
The aim of the project is to design a game on an embedded platform. We use a Digilent Nexys2
board with a Spartan 3E FPGA. The Microblaze CPU of the XILINX family is used as the
processor to run the game software. The idea of the game is to shoot a squirrel when it pops up on
the screen. The user scores every time the squirrel is shot correctly, and loses points for mis hits.
We managed to implement most of the ideas that we had thought of during the initial proposal.
Many more improvements and add-ons could have been added but due to lack of time we could
not implement those. Overall we were satisfied with our project and the main idea of Hardware-
Software co-design in embedded system design was understood.

2

Table of Contents
1. Introduction..4
2. System Architecture...4

2.1 VGA Controller..5
2.2 Seven Segment Display..7
2.3 Mouse Controller Implementation using PS2 Interface...8
2.4 Interface to Software...10
2.5 Timer..11

3. Game Logic..12
4. Design Synthesis..13
5. Problems...13
6. Contributions..14
7. References..15

3

 1. Introduction
The idea of the game is to have the user shoot a squirrel. The VGA screen has four square holes.
A squirrel pops up once in a while from one of the holes. The user can use a PS2 mouse to shoot
the squirrel. The user starts with 3 “lives” and can score points by shooting the squirrel. If the
user mis hits, the score decrements and every time the user mis hits the life decreases. Game ends
when the user loses all the “lives”. Also, if the user fails to hit the squirrel 3 times in a row, user
loses a point. If the user manages to score 10 points, the life increases by 1 and the user can have
a maximum of 4 lives. The score is displayed on the right top of the screen and also on the 7
segment LEDs on the board, while the remaining lives is displayed by lines on the bottom of the
screen.

The game progresses with time. Initially, the time for which the squirrel stays visible is longer,
enabling the user to hit the squirrel easily, and as time goes by, the time duration for which the
squirrel is visible goes on decreasing making it harder to hit the squirrel. The game ends after a
programmable number of squirrels are displayed or if the user loses all the lives.

The game is developed on a Digilent Nexys-2 board with a Spartan3E FPGA on it. We have used
the 7 segment LED and the VGA monitor interface available on the board.

The software is written in C and runs on a Microblaze processor. Since the software is very
simple, only register reads and writes are needed to make the game work. The overall system
control, game logic, scoring and life controls have been implemented on the software. Even
though most parts of the game has been implemented on hardware, we still need the Microblaze
since it is the master controller controlling all the other blocks and to run the software.

 2. System Architecture
The game architecture is shown in the block diagram below in Figure 1. The Microblaze on the
Digilent Nexys-2 board is used as the main processor for running the game logic. The VGA
controller, the seven segment display and the PS2 mouse are controlled by hardware IPs. The
clock and the rst block on the board are used to generate the clock and reset needed by the H/W
IPs and the Microblaze processor. The communication between the Microblaze and the various
H/W IPs is through the PLB bus. The user can control the various operations of the VGA
controller by programming some registers in the VGA IP block and the 7 segment IP. These
registers are also used to get information from the hardware to the software via the PLB bus.
Detailed description of the different IPs and the application software is described below.

4

Figure 1 Top Level Block Diagram

The detailed description of each of the blocks have been discussed below.

 2.1 VGA Controller

This block is designed to generate and display the graphics of the game on a 640*480 VGA
monitor. As the VGA monitor works with 25 MHz synchronization signals, the 50 MHz on board
clock is divided by two by using a simple D flip flop structure, the DFF and then supply it to the
rest of the system. The block diagram is as shown below in Figure 2.

5

Figure 2 – VGA controller architecture

The block employs a monitor_controller block, which generates the necessary output horizontal
and vertical synchronization Hs and Vs signals of the monitor together with the hcnt and vcnt
signals to the data_generator block to generate the corresponding output data, data_out, to be
displayed on the screen. The monitor_controller block is same as the vga_controller_640_60 IP
that was taken from the VGA RefComp1 design of Digilentinc. The rest of VGA design is
composed of custom designs.

The data_generator module is responsible for generating the output data synchronized with hcnt
and vcnt signals coming from monitor_controller. Inside this module there is another module
called background_generator, which generates the game background such as drawing the holes,
showing the game score and the remaining lives also on the VGA screen.

6

The data_generator on the request of draw_squirrel signal draws the squirrel to the one of the 4
holes selected by the incoming hole_number signal. By making use of an internal ROM memory
composed of logic cells, the image of the squirrel is hand-coded and stored there. So we are not
using any BRAM for storing the squirrel image. After the squirrel is displayed, a signal called
sqrl_done, which is a 1 bit simple signal, is sent to the Microblaze processor through one of the
PLB registers in order to use it in the game logic. Even though we planned to use sqrl_done in the
software for further processing, it was not needed in the end as we made sure that the squirrel
images were written properly and completed by the vga_controller. Hence this signal was used
only for debug purposes to begin with and later was not used in the software.

 2.2 Seven Segment Display
This block is designed to control the seven segment display in order to show the game score on
the board. As it can be seen in Figure 3 below, the block takes clk, rst and 15 bit input data, d_in,
which contain the information for 4 different segments each represented by 4 bits and then it
generates the segment data, d_seg and the corresponding 1 bit d_anode output signal which is
needed to refresh the display:

Figure 3 Seven segment display

Inside the block, there is a counter that counts until 50000 with 50 MHz on board clock signal in
order to generate a refresh signal that is toggling with 1 ms. With this refresh signal, each
segment is refreshed in sequence of d_anode signal which is the refreshing signal of each
segment in each 4 ms, which is in the valid range of 1 ms to 16 ms of the display suppliers. For
each segment, 4 bits of the digit to be displayed is read from the 16 bit input and then decoded
into 8 bits to generate the score according to the connections that is required by the display
supplier as illustrated in Figure 4 below which also can be seen in the Digilent Nexys2 Board
reference2 manual.

7

Figure 4 Illustration of the display of the digits2

 2.3 Mouse Controller Implementation using PS2 Interface
The mouse controller is implemented using the PS2 interface. The basic mouse controller IP
MouseRefComp3, which was available at the Digilent website3 was used as the reference. Few
modifications had to be done to the code in order to make it compatible and integrate it with the
XPS software. The block diagram below in Figure 5, gives the overview of the mouse controller.

Figure 5 Block Diagram of the Mouse Implementation3

8

The function of various blocks in the above block diagram in Figure 5 have been discussed
briefly below.

2.3.1 PS2 Interface

The PS/2 interface module is the one that directly interacts with mouse hardware. This module
implements a generic bi-directional PS/2 interface. It can be used with any PS/2 compatible
device and it offers its clients a convenient way to exchange data. The interface transparently
wraps the byte to be sent into a PS/2 frame, generates the parity bit, and sends the frame one bit
at a time to the device. Similarly, when receiving data from the PS2 device, the interface receives
the frame, checks for parity, extracts the useful data, and forwards it to the Mouse Controller
block. If an error occurs when sending or receiving a byte, the Mouse Controller block is
informed by setting the err output line high. This way it can resend the data or issue a resend
command to the device.

The CLK and RST signals are connected to the global clock and reset signals. PS2_clk and
PS2_data are bi-directional signals that are mapped to the respective pins in the UCF file so that
they are directly connected the mouse hardware.

2.3.2 Mouse Controller

The Mouse Controller module is connected between the PS Interface and Mouse Displayer
modules. Based on the RX_data signal it receives from the PS Interface module and the other
signals from the Resolution Mouse Informer module, this module generates the X and Y position
of the mouse cursor. These 2 signals, the X and Y positions are the main signals required by the
Mouse Displayer based on which it generates the mouse pointer on the appropriate position. This
module is based on a state machine which starts with a reset state. When in reset state, the
controller resets the mouse and begins an initialization procedure. After the initialization the
module is ready to perform the calculation of the X and Y position of the mouse cursor. It also
and sends information about mouse clicks to one of the user programmable registers. The
decision of whether the user clicked in the correct square is done in hardware and the information
whether the user was able to click at the right moment and in what square the user clicked is sent
to one of the programmable registers. This register is read at the right time by the processor to
make decisions about whether the mouse was clicked in the correct square or not.

2.3.3 Resolution Mouse Informer

The Resolution Mouse Informer implements the logic that sets the position of the mouse when the
FPGA is powered-up or when the resolution changes. It also sets the bounds of the mouse
according to the present resolution. The mouse is centered for the currently selected resolution
which it gets from the Top Module (as per the signals required for a screen with resolution
640x480) and the bounds are set accordingly. This way, the mouse cursor will appear in the
center of the screen at start-up, and when the resolution is changed it will not leave the screen.
The position, and the bounds, are set by placing the coordinate of the center point on the output

9

value and activating the corresponding set signal (set_x for horizontal position, set_y for vertical
position, setmax_x for horizontal maximum value, and setmax_y for the vertical maximum
value). In our design, the values for the Resolution Mouse Informer are set so that it suitable for a
resolution of 640x480 screen size.

2.3.4 Mouse Displayer

The Mouse Displayer module generates the mouse pointer based on the X and Y position it
receives from the Mouse Controller module. The RGB signals along with horizontal and vertical
counters (hcount and vcount) are received from VGA Controller module. If the counters are
inside the mouse cursor bounds, then the mouse pointer is sent to the screen instead of the
received pixels. The mouse pointer 16x16 pixels and uses 8 bit data. In order to implement the
sniper image for the mouse pointer, a 256x8 bit ROM is used in which the data for the sniper
image is stored. When mouse pointer is to be displayed, then the data from the ROM is sent out
as the RGB_out signal to the monitor otherwise the RGB_in data from the VGA Controller is sent
out without any changes.

 2.4 Interface to Software
The interface to the software, meaning the Microblaze processor, is done via some user registers.
The videos on the course homepage were very useful in learning how to create our own IP block
and to interface it to the processor. Even though most of the game is written in hardware, we felt
the need to use the Microblaze processor as the main processor controlling all the other hardware
IPs. The display of the squirrel images is controlled by certain bits in the user programmable
registers. Figure 1 shows the basic architecture of the design. It can be seen that the VGA
controller IP contains some user programmable registers. One of the registers contains bits which
can be used to enable the display of a squirrel in a particular hole.

Another important role of Microblaze was to randomize the display of the figure. The standard
“C” rand() function call is used to get a random number between 1 and 4 which is then used to
select which hole the display of the squirrel should be done.

The processor also controls the timer IP used. It programs the delays between each display of the
squirrel image. It changes the time for which the squirrel is displayed by varying the amount of
time for which the timer counts to the programmed. We have not used any interrupts to get the
time when the timer counts down to zero. We have a simple delay routine, which accepts a
number used to program the timer counter register. Once the “delay(timer_count_value)” routine
is called, the timer starts counting until it reaches the programmed value. Once this is done, the
timer is reset and the function returns to the main() function. Hence by programming the delay
values passed into this function, we get a variable delay, which is then used to control the time
for which the squirrel is visible.

One of the user programmable registers is also used to get information about the clicks the user
does. If the user clicks in the correct square (i.e when the image of the squirrel is present) a single

10

bit is written to this register saying that the user did a correct click. Also we get the information
as to which hole the user clicked in, but this information was not needed by game logic and was
used only for debug purposes. The processor performs reads of this single bit register when it is
inside the “delay(timer_count_value)” subroutine and increments the score if the bit is set, or
decrements if the bit is not set. Hence by doing this, the processor is able to keep track of the
score and the life of the player. These values are also written to another set of user programmable
registers to be used for displaying life and score on the VGA monitor and the seven segment
LED's available on the board.

There are basically two main IPs as described above. The mouse controller IP is embedded inside
the VGA controller top level IP. The processor local bus (PLB) is used to control and interface all
the modules in the “squirrel hunter”. The hardware IP blocks are instantiated inside the IPs
generated using the Xilinx custom IP design flow. There are a few user programmable registers
created by when designing the custom IP, and these are used as registers to program the behavior
of the IPs.

 2.5 Timer

A timer from the Xilinx IP library is also used in the game. This block is needed to generate
delays between which no squirrels are displayed in the squares. The timer is given different
values to count down from, in order to generate different delays between displaying squirrels.

11

 3. Game Logic
A simple flow chart of the user game logic is shown below in Figure 6.

Figure 6 Game logic

The game starts when the system is brought out of reset. A user defined reset button on the board
can be used to reset the game logic as well as the hardware. Once the processor is out of reset, the
game software is executed as shown above.
The game depends mainly on the random number generator and the programmable delay. The
standard rand() function in C is used to generate random numbers between 0 and 3 and these
numbers are used to display a squirrel in a particular square. The delay block is done using a
Timer block which is one the standard Xilinx IPs.
The game software is very simple in its nature and mainly has a call to a delay function. The
delay function is called with a different delay value as the game progresses. Initially we start off
with a big delay, giving the user a lot of time to be able to click on a squirrel. As the time goes
on, the delay between each squirrel display decreases, making it harder for the user to score. For
every squirrel missed, the user loses a life and also a point. Also if the user misses 3 squirrels in a
row then, a point is lost and if the user is able to get 10 squirrels correctly, the user will be able to
get one extra life and similarly one more life at 20 points. At anytime the user can have a
maximum of 4 lives.

12

 4. Design Synthesis
The design was synthesized using Xilinx XST. The synthesis results are shown below.

Number of External IOBs 65 out of 250 26%
Number of BUFGMUXs 2 out of 24 8%
Number of DCMs 1 out of 8 12%
Number of MULT18X18SIOs 3 out of 28 10%
Number of RAMB16s 16 out of 28 57%
Number of Slices 4132 out of 8672 47%
Number of SLICEMs 516 out of 4336 11%

Table 1: Device usage

Some problems were faced during synthesis of the design. We included a memory in the design,
generated from Xilinx LogiCore IP generator tool. When this memory was included in the
design, XST was not able to recognize the memory as a hard IP. We overcame the problem by
hard-coding the memory as ROMs by using regular logic cells. The major part of the slices have
been occupied by the ROMs for storing the images of the squirrel and mouse pointer.

 5. Problems
Not many problems were faced during the design process. Initially we had problems interfacing
the newly created user Hardware IPs with the Microblaze processor. But these initial hurdles
were crossed once we looked at some demo videos.

We also had some problems integrating the hardware IPs like memories generated from Xilinx
LogiCore software with other modules in XST design flow. We overcame this by hard-coding the
memories as ROM arrays in the design.

While interfacing the PS2 mouse controller with XST flow, we had some issues with PS2_CLK
and PS2_DATA lines which were inout ports. We had to make a few changes in the .mpd files
and also change the ports to in. After this we got the mouse working with the XPS.

We faced some problems with having more than one hardware design (VHDL) files. But later we
figured it out that the .pao file has to be modified in order to be able to use entities described in
separate files. We could also have solved this by having all the entity-architecture pairs described
in one file, but we found it very confusing and clumsy.

13

Finally, we faced some random errors in the squirrel image display. The image of the squirrel
used to shift randomly inside the square. We could figure out that there was some issue with the
addressing of the ROM in which the squirrel image was stored. Despite including conditions for
resetting the address every time the squirrel image was read, we were not able to get over this
issue. Due to lack of time and also since the problem occurs randomly and occurs very rarely, we
left the issue unresolved and it still exits.

 6. Contributions
Hardware:

VGA Controller and 7 Segment LED Controller
 Can Bilgin

PS2 Mouse Interface, Score Display and Graphics
Balaji S

Software:

Register Programming, PLB Communication and Game Logic
Rakesh MG

Integration and Testing:
Everyone

Report:
Everyone

System Architecture:
Everyone

14

 7. References
1. VGA RefComp

http://www.digilentinc.com/Products/Detail.cfm?NavTop=2&NavSub=451&Prod=NEXYS2

http://www.digilentinc.com/Data/Documents/Reference%20Designs/VGA%20RefComp.zip

2. Nexy2 Reference manual

http://www.digilentinc.com/Products/Detail.cfm?NavTop=2&NavSub=451&Prod=NEXYS2

http://www.digilentinc.com/Data/Products/NEXYS2/Nexys2_rm.pdf

3. MouseRefComp

http://www.digilentinc.com/Products/Detail.cfm?NavTop=2&NavSub=451&Prod=NEXYS2

http://www.digilentinc.com/Data/Documents/Reference%20Designs/MouseRefComp.zip

15

http://www.digilentinc.com/Data/Documents/Reference%20Designs/MouseRefComp.zip
http://www.digilentinc.com/Products/Detail.cfm?NavTop=2&NavSub=451&Prod=NEXYS2
http://www.digilentinc.com/Data/Products/NEXYS2/Nexys2_rm.pdf
http://www.digilentinc.com/Products/Detail.cfm?NavTop=2&NavSub=451&Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?NavTop=2&NavSub=451&Prod=NEXYS2

	1. Introduction
	2. System Architecture
	2.1 VGA Controller
	2.2 Seven Segment Display
	2.3 Mouse Controller Implementation using PS2 Interface
	2.4 Interface to Software
	2.5 Timer

	3. Game Logic
	4. Design Synthesis
	5. Problems
	6. Contributions
	7. References

