
Department of Computer Science
Embedded System Design - Advanced Course (EDA385)

Project Report
FPGA Invaders

Per Edgren (dt06pe3)
Marthin Nielsen (dt05mn7)

October 19, 2009

Abstract

This report is part of a project where a two-dimensional space shooter game
is designed on a Digilent Nexys2 development board (FPGA) using the Xilinx
EDK. The system is designed using a hardware description language (VHDL)
and a software programming language (C). The report covers everything from
input-output (keyboard and VGA monitor) to the inner architecture of the
system. Results and possible improvements are described both in terms of
implementation and project work. Basic knowledge of C and VHDL is assumed
throughout the report.

Contents
1 Introduction 2

1.1 Legend . 2
1.2 Deviation from Proposal . 2
1.3 General Design . 2
1.4 Software / Hardware Partitioning 3
1.5 Environment and Tools . 3

2 Architecture 4

3 Hardware 6
3.1 VGA Controller . 6
3.2 PS/2 Controller . 7

4 Software 8
4.1 Collision detection . 8
4.2 Painting objects . 9

5 Game Description 10

6 Problems and Solutions 12
6.1 Adapting the Sample VGA Controller to PLB 12
6.2 Choosing a Rendering Method 12
6.3 PS/2 Interrupts . 12
6.4 Routing Issues . 12

7 Conclusion 13
7.1 Possible Improvements . 13
7.2 Lessons Learned . 13

8 Contributions 14

9 User Manual 14

10 References 14

1

1 Introduction

Two main goals when choosing a subject for this project were that it had to be
challenging yet attainable. Due to a lack of experience in hardware design and
FPGAs, it was very hard to estimate workload and feasibility. A space-shooter
game in a scrolling world seemed both suitable and appealing.

1.1 Legend

This is FPGA Invaders.

The goal of this game is to survive as long as
possible in a lethal environment surrounded
by asteroids, enemy ships and other obsta-
cles. Everything that is hurled at the player
can be destroyed with the ship’s laser turret.

1.2 Deviation from Proposal

The first idea was to use framebuffers, i.e. to keep a copy of both the foreground
and background in memory. After some research it was clear that this model
would not fit on the board. An alternative to the framebuffers was to store
the different objects such as the player, asteroids and enemy ships as bitmaps.
The background would then be generated on the fly using a random algorithm
implemented in hardware.

Instead of rendering bitmaps, the object representation was reduced to a set of
rectangles. The background effect was omitted in favor of better game experi-
ence (improved controls, smarter enemies etc.)

1.3 General Design

PS/2
controller

VGA
Controller

Timer

Rectangle
Rendering

Figure 1: System Overview

A rough figure of the system design is
shown to the left. A program written
in C is run on the MicroBlaze soft-
core processor. This program acts on
input from a keyboard and sends com-
mands to the VGA controller that in
turn renders the desired output. More
detailed descriptions of the hardware
and software are found in their corre-
sponding sections.

There are two major communication
interfaces between hardware and soft-
ware. Firstly, there is the input
(PS/2) that is read from software.

2

Secondly, the graphical output is controlled in software and rendered in hard-
ware. Rectangles are encoded into 32 bit words as two 16 bit coordinates. In
software, the internal object representation is packed to this format. It is then
unpacked and displayed by the VGA controller.

1.4 Software / Hardware Partitioning

There are some tasks that naturally need to be implemented in hardware, such
as I/O that are routed to physical connectors on the board. In an analogous
manner there are tasks that are meant to be implemented in software. These can
often be identified by the sequential logic they perform. The final partitioning
of the system is listed below.

Hardware

• PS/2 input

• Rectangle rendering

• VGA Output

Software

• Game logic

• Collision detection

• Object representation (rectangle combinations)

1.5 Environment and Tools

The target board in this project is the Digilent Nexys 2 with a Spartan3E-
1200 FPGA. The development environment for software and hardware is Xilinx
Platform Studio, Xilinx ISE for simulation and Diligent ExPort for downloading
the gate configuration to the board.

3

2 Architecture

This section describes the system architecture and the interaction between the
different IP cores. Several Xilinx standard IP cores are used, the most promi-
nent of them being the MicroBlaze softcore processor. Softcore means that the
processor is synthesized along with the rest of the IP cores, resulting in a very
portable design. Additional cores include bus controllers, a timer and an RS232
interface. A lightweight PS/2 controller has been reused from the course home-
page, slightly modified for use with the PLB. A custom VGA controller was
designed. A block diagram with the IP cores and the bus communication is
shown below.

Figure 2: Block diagram of IP cores

The slice utilization of the entire project is 88%. In contrast to older projects
in the course, the limiting factor was the number of interconnections. This
problem is discussed extensively in section Problems and Solutions.

Design summary, entire project:

Number of 4 input LUTs 12,219 out of 17,344 70%
Number of occupied Slices 7,704 out of 8,672 88%

4

X_start
0 to 7

Y_start
8 to 15

X_end
16 to 23

Y_end
24 to 31

Rectangle

Figure 3: Bit representation

The communication interface between
software and the VGA controller is
based on a rectangle representation.
As the figure indicates a 32 bit word is
divided into four parts, Xstart, Ystart

and Xend, Yend.

The screen is divided into two dif-
ferent parts. Between pixel columns
0-160 and 460-640, hardware con-
trols and renders the graphics while
columns 160-460 are controlled by
software but rendered in hardware.

5

3 Hardware

3.1 VGA Controller

Figure 4: VGA connector

The VGA controller is divided into
two logical parts. The top-level com-
ponent is responsible for providing
a representation of the current pixel
that is drawn on the monitor. It
contains the external ports (R, G, B,
HSYNC and VSYNC) that are phys-
ically connected to the monitor. The
schematic of the VGA connector is
shown to the left (Nexys2 Reference
Manual). The top-level component in-
stantiates the User_logic entity that
controls the pixel output. It also
sends the next X and Y pair (denoted
next_x and next_y) to be displayed
on the monitor.

VGA_ctrl

Pixel count

set next
x,y

Pixel
output

Generate
sync

next_x
next_y

R G B

Green
Red

Blue

Rectangle
Comp 1

Rectangle
Comp 2

Rectangle
Comp 3

Rectangle
Comp 128...........

Color
Chooser

Border
generator

User_logic

HSYNC VSYNC

Figure 5: VGA Controller schematic

The basic idea of the graphical rendering entity is to compute each rectangle
in parallel. This way the parallel nature of hardware is exploited and a short
critical path is guaranteed. In order to accomplish this, a separate process
is generated for each rectangle. Part of the VHDL code used to generate the
processes is shown below. User_logic contains a BRAM implementation that is
accessible from the MicroBlaze application over the PLB. Each process retrieves
two coordinates (the corners of a rectangle) from the BRAM and checks if
(next_x, next_y) is within the boundaries of the rectangle. The result is sent

6

to a multiplexer-like process that sends the desired RGB values back to the
top-level component.

for obj_index in 0 to RECTANGLE_VECTOR_LEN - 1 generate
begin

FG_SELECTOR : process (Bus2IP_Clk) is
begin

-- render logic
end process;

end generate;

The device utilization of the VGA Controller is notably high. This is an effect
of the numerous processes that are generated. This highlights the trade-off
between area and speed that is part of every design process.

Design summary, VGA Controller:

Number of 4 input LUTs 10,287 out of 17,344 59%
Number of occupied Slices 6,609 out of 8,672 76%

3.2 PS/2 Controller

In order to get a smooth game experience and a quick response on the user-
input an interrupt based PS/2 controller was to be implemented. However, due
to an unknown error, MicroBlaze was unable to handle the incoming interrupt.
After several attempts with and without external interrupt controllers and after
discussing the issue with the course tutors, a polling based solution was chosen.
After some tuning (e.g. embedding PS/2 polling into the collision detection
algorithm) the controls were acceptable.

Figure 6: PS/2 connector (Nexys2 Reference Manual)

Different PS/2 implementations were tested when trying to fix the interrupt
issue, including the Xilinx PS/2 IP core. As the interrupt issue remained, the
most lightweight PS/2 controller was chosen. In contrast to the Xilinx core,
this controller is designed to treat the CLK and DATA ports as pure inputs.
Tri-state ports are not required in order to receive data from a keyboard.

Design summary, PS/2 Controller:

Number of 4 input LUTs 106 out of 17,344 <1%
Number of occupied Slices 83 out of 8,672 <1%

7

4 Software

The software running on the MicroBlaze is a simple sequential game engine. It
is responsible for interpreting user input, the interaction between objects and
commanding the VGA controller. The flowchart below describes the different
steps involved when executing the game, from start to game over. As PS/2
interrupts are not used, keyboard polling is performed between the different
steps in order to reduce the risk of missing a key event.

Init Peripherals

Init Objects

Start timer

Animate
explosion

Check Collision

Read Input

Move Objects

Collision

Game Cycle

Frame Cycle

Figure 7: Software flowchart

4.1 Collision detection

The collision detection algorithm performs simple boundary checks between
each of the objects. This is done once in every frame and is not an efficient
implementation. This is not a problem as CPU time is abundant - MicroBlaze
is in idle wait 95% of the time.

8

4.2 Painting objects

Visual objects are created by combining different kinds of rectangles.
A sample object can be seen to the right. In order to paint this
object, the following function calls are performed.

void draw_player(void)
{

put_rectangle(4 + p.x0, 0 + p.y0, 6 + p.x0, 13 + p.y0, 0);
put_rectangle(2 + p.x0, 3 + p.y0, 4 + p.x0, 15 + p.y0, 1);
put_rectangle(6 + p.x0, 3 + p.y0, 8 + p.x0, 15 + p.y0, 2);
put_rectangle(0 + p.x0, 7 + p.y0, 10 + p.x0, 13 + p.y0, 3);

}

In put_rectangle the rectangle data is packed into 32 bit words and written
to the VGA controller. The implementation is shown below.

put_rectangle(short x1, short y1, short x2, short y2, short id)
{

int *addr = (int*)(XPAR_PLB_VGACTRL_0_MEM0_BASEADDR + id*4);

int data = 0;

data = x1;
data <<= 8;
data += y1;
data <<= 8;
data += x2;
data <<= 8;
data += y2;

*addr = data;
}

9

5 Game Description

A ”screenshot” of the game can be seen below. The asteroids are randomly
positioned, and so is the initial position of the enemy ships (a.k.a. ”kamikazes”).
The kamikazes are ships that have a random speed and start to move sideways,
also at a random speed, after reaching a distance of 200 pixels from the player.
Both asteroids and kamikazes can be destroyed by the player with a single shot.
In addition to the kamikazes and asteroids there are bars posing as obstacles at
random sizes between one third and two thirds of the game field width. These
can be destroyed if needed with a fusillade of 70 shots. At half their health they
start flashing, indicating that they have been damaged.

Control Action
← Move player left
→ Move player right
↑ Move player up
↓ Move player down

Space Fire

The table above shows the commands that the user can send and their corre-
sponding keys.

Hardware Controlled Rendering

Software Controlled Rendering

Score

Shots left

Asteroid

Kamikaze

Player ship

Bar

Figure 8: A sample screenshot

In the bottom right corner the ammunition is displayed. There is a total of 14
shots available that are returned to the player once they either hit a target or
move out of the screen. In the upper right corner there is a software rendered
seven-segment display of five digits, showing the player’s current score. The

10

score is incremented constantly as long as the player stays alive. The player will
also get rewarded for destroying the different objects: 100 points for asteroids
and bars, 200 for kamikazes.

In the beginning of the game there are no enemies and once every 1,000 points,
a kamikaze is released from the depot in the upper left corner. At 14,000 points
all kamikazes are detached. This results in an increasing difficulty level as the
game progresses. When a ship or an asteroid is destroyed by the player it is
re-spawned at the top of the screen.

11

6 Problems and Solutions

6.1 Adapting the Sample VGA Controller to PLB

A sample implementation of a VGA controller with a 1 bit color depth frame-
buffer is given on the course homepage. The BRAM is connected to the OPB,
while the rest of the IP cores are connected to the PLB. Because of limited
experience it was not realistic to implement a PLB slave by hand.

The solution was to create a new IP core using the ”Create or Import Peripheral”
wizard in Xilinx Platform Studio. This stub contained a BRAM implementation
with a PLB interface. The VGA related logic was ported from the sample
implementation after which the real customization began.

6.2 Choosing a Rendering Method

As framebuffers are expensive in terms of gate utilization, storing color infor-
mation would not have been possible without greatly reducing the resolution.
Pure framebuffer implementations are also inefficient in terms of speed as the
rendering is performed in software.

In the end rectangles were chosen as the rendering method. This representation
is very memory efficient as a large area can be covered by a single rectangle,
described only by a coordinate pair. The implementation of a rectangle renderer
is very straightforward and the result is a very flexible platform (objects are
painted by combining rectangles in software).

6.3 PS/2 Interrupts

A time consuming problem that remains unsolved is the PS/2 interrupts. The
source of the error has not been identified and a polling based solution has been
implemented instead.

6.4 Routing Issues

In the end of the project the hardware synthesis took longer and longer to
complete, often surpassing 30 minutes. While slice utilization remained at a
controlled level, the number of interconnections rose aggressively. In some cases
this resulted in designs that could not be routed at all.

The numerous interconnections are most likely caused by the memory access
method in the rectangle processes. Instead of hot-wiring the comparators to
the BRAM signal, appropriate read processes should have been used. As the
problem arised during the last week of the project, there was not enough time
to change the implementation. A blur effect where the rectangles would look
smoother was abandoned because of the routing problem.

12

7 Conclusion

This project has provided a great challenge as well as a lot of hands on ex-
perience in hardware design, something that was missing among the project
members. It was a great success with a satisfying result. The game is very fun
to play thanks to the well balanced difficulty levels and the interesting tactical
possibilities. We enjoyed creating ”FPGA Invaders” and are very proud of what
we have accomplished, especially considering that our group only consists of two
members.

If we had the chance to start over, the main focus would have been to implement
the BRAM access according to standards. This way we would not have been
limited by routing issues and could have spent more time on improving the game
even more.

7.1 Possible Improvements

In addition to the problems mentioned in section Problems and Solutions, there
are two features in particular that would have added to the gaming experience.
The proposal suggested a background containing stars that was to be rendered
independently from the rest of the game. This, in combination with the blur
effect that was attempted would have contributed much to the graphical finish.

Another way of improving the project is to extend the game logic with more
features - the software is very extensible.

7.2 Lessons Learned

When writing HDL code it is common practice to simulate it in a controlled
environment prior to using it in a real design. This saves time as the lengthy
synthesis process can be avoided when solving a particular problem. The sim-
ulation environment (ISE) also provides adequate tools needed for analyzing
signals making debugging easier. In future projects, simulation will be used
more often in order to increase productivity.

13

8 Contributions

The project proposal, game content and the final report were created by Per
and Marthin.

The system architecture was designed by Per. The VGA controller was con-
structed by Per and Marthin, with influences from a sample implementation
given on the course homepage. The software solution was written by Per, with
MicroBlaze as the intended target platform from the start.

9 User Manual

Hardware requirements:
• Digilent Nexys2 FPGA prototyping board

• PS/2 Keyboard for user input

• VGA monitor for output

Installation:
• Download the project files

• Open the project in Xilinx Platform Studio

• Update Bitsteam (synthesis and compilation)

• Start Digilent ExPort

• Plug the USB, PS/2 and VGA contacts and power on the board

• Select Auto-Detect USB, click Initialize Chain and select check the ROM
box

• Click browse and locate download.bit under implementation in the project
folder

• Click Program Chain and enjoy the game!

10 References

Gruian, F: Tutorials and documents (sample VHDL implementations),
(http://cs.lth.se/english/course/
eda385_design_of_embedded_systems_advanced_course/tutorials_and_documents/).

Digilent: Digilent Nexys2 Board Reference Manual,
(http://fileadmin.cs.lth.se/cs/Education/EDA385/HT09/docs/Nexys2_rm.pdf).

14

	Introduction
	Legend
	Deviation from Proposal
	General Design
	Software / Hardware Partitioning
	Environment and Tools

	Architecture
	Hardware
	VGA Controller
	PS/2 Controller

	Software
	Collision detection
	Painting objects

	Game Description
	Problems and Solutions
	Adapting the Sample VGA Controller to PLB
	Choosing a Rendering Method
	PS/2 Interrupts
	Routing Issues

	Conclusion
	Possible Improvements
	Lessons Learned

	Contributions
	User Manual
	References

