
FPGA-pod

EDA385 - DESIGN OF EMBEDDED SYSTEMS,

ADVANCED COURSE

Pierre-Adrien Lefebvre: pieradrien.lefebvre@gmail.com

Kristian Samppa: et06ks7@student.lth.se

Matt Moles: mkmoles@ncsu.edu

19-10-2009

mailto:pieradrien.lefebvre@gmail.com
mailto:et06ks7@student.lth.se
mailto:mkmoles@ncsu.edu

Page 2 of 18

Abstract

This report summarizes the final project for EDA385, a course offered by the Department

of Computer Science, a part of the faculty of engineering (LTH) at Lund University. The

Digilent Nexys2 development board, a design platform built around a Xilinx Spartan 3E

FPGA and MicroBlaze processor, was used over the course of this embedded systems

project for its development. Additionally included in the design are three add-on modules

to allow for data storage and user interaction; these add-on modules include: one SD card

interface (PModSD), one LCD (PModCLS), and one speaker/headphone amplifier

(PModAMP1).

The music player is a familiar piece of technology to most – users select songs stored in a

memory and they play. In this project a rudimentary music player, the FPGA-pod, was

implemented. The user interface consists of 4 push buttons on the Nexys2 FPGA board,

allowing the user to choose a song to be played, and a LCD display, showing the

previous/current/next song. The original design on the FPGA-pod is shown in the figure

below. The actual implementation of FPGA-pod as well as the problems encountered and

necessary workarounds is detailed in this report.

Figure: Original FPGA-pod Design

Page 3 of 18

Table of Contents

Abstract……….……...2

Table of Contents………………………………………………………………………………………..............................3

1. Introduction……………………………………………………………………………….………………………………4

 1.1 Digilent Nexys2 FPGA Board……………………………………………………………………………4

 1.2 MicroBlaze Soft Core Processor……………………………………………………………………….4

 1.3 Embedded Development Kit (EDK)………………………………………………………………….5

 1.4 FPGA-pod Global Architecture…………………………………………………………………………5

2. Software Implementation..…………………...……………………………………………………………………..7

 2.1 SD Communication & Controller…...….…...…………………………………………………………7

 2.2 FAT File System……………………………………………………………………………………………...8

 2.3 WAVE Files & WAVE File Library…….………………………………………………………………9

 2.4 Desktop Testing…………………………………………………………………………...……………….10

2.5 User Interface……………………………………………………………………………………………….11

3. Hardware Architecture…….……………………………………………………………………….………………12

 3.1 Audio IP-Core……………………………………………………………………………….………………12

 3.2 Digital-to-Analog Converter.………………………………………………………………………….13

4. Installation & User Manual……………………………………………….……………………………………….14

 4.1 Installation…………………………………………………………………………………………………...15

 4.2 User Manual….……………………………………………………………………………………………...15

5. Problems & Suggestions….………………………………………………………………………………………...15

 5.1 SD Controller ………………………………………………………………………………….……………15

 5.2 Little-Endian Convention………………………………………………………………………………16

 5.3 Extended WAVE File Format…………………………………………………………………………16

 5.4 Digital-to-Analog Converter…………………………………………………………….…………….16

6. Lessons Learned……………..….………………………………………………………………………………….…17

 6.1 Time Constraints.………………………………………………………………………………………….17

 6.2 Design & Implementation....…………………………………………………………………………..17

7. Conclusions……17

8. Contributions……………..….…………………………………………………………………………………………18

Page 4 of 18

1. Introduction

This section gives a brief introduction to the embedded systems development tools used

for the creation and completion of this project.

1.1 Digilent Nexys2 FPGA Board

The FPGA-pod was implemented using the Digilent Nexys2 development

board (Shown, Figure 1.1), an embedded systems development board built

around the Xilinx Spartan3E Field Programmable Gate Array (FPGA) and

MicroBlaze processor.

 Figure 1.1:

 Digilent Nexys2 Board

1.2 MicroBlaze Soft Core Processor

The MicroBlaze processor is a reduced instruction set computing (RISC)

based soft core processor. A block style flow diagram of the MicroBlaze

Processor is shown in Figure 1.2.

 Figure 1.2:

 MicroBlaze Diagram

Page 5 of 18

1.3 Embedded Development Kit (EDK)

The Xilinx Embedded Development Kit (EDK) allows for the development of

applications and embedded systems utilizing the MicroBlaze processor.

Hardware and software were writing in C and VHDL programming

languages.

1.4 FPGA-pod Global Architecture

Global architecture is shown in Figure 1.4 below.

Figure 1.4: FPGA-pod Global Architecture

Page 6 of 18

Hardware cores used in project:

- MicroBlaze 7.10.d
- PLB bus v4.6
- BRAM controller 2.10, BRAM block (32 KB program memory)
- xps_gpio : driving SD "pins, push-buttons and LEDs
- xps_uartlite : driving PMOD-CLS, speed = 9600 bds
- clock_generator : crystal 50 MHz => 75 MHz system clock
- xps_intc : interrupt controller (not used but if we need it...)
- audio_output_ip : User IP core designed under Xilinx ISE
- proc_sys_reset : handle reset when the board is powered-up

Hardware & Software Occupancy - Device Utilization Summary :

Hardware Occupancy:

Selected Device : 3s1200efg320-4

Number of Slices: 1576 out of 8672 18%
Number of Slice Flip Flops: 1984 out of 17344 11%
Number of 4 input LUTs: 2500 out of 17344 14%
Number used as logic: 2138
Number used as Shift registers: 106
Number used as RAMs: 256
Number of IOs: 30
 Number of bonded IOBs: 30 out of 250 12%
 Number of BRAMs: 18 out of 28 64%
 Number of MULT18X18SIOs: 3 out of 28 10%
 Number of GCLKs: 6 out of 24 25%
 Number of DCMs: 2 out of 8 25%

Software Occupancy :

MB-size M:/EDA385/FPGA_POD/out.elf
 text data bss dec hex filename
 25170 1368 3856 30394

76ba M:/EDA385/FPGA_POD/out.elf
Done!

Program memory : 32kB, “optimize size” option used for the compilation

Page 7 of 18

2. Software Implementation

This section details the software portion of FPGA-pod.

2.1 SD Card Communication & Controller

Secure digital (SD) cards (Card Shown, Figure 2.1) have 9 pins in total - 3

pins for power and 6 pins for SD card-host communication. The SD card was

operated in one wire SD mode. Data transfer between the SD card and host is

made via synchronous byte oriented serial communication. In order to

communicate with the SD card (Communication Shown, Figure 2.1), it must

first be initialized by using a precise sequence of transmitted signals. After

initialization, the host can communicate with the SD card by sending a fixed

length (6 bytes) packet to the SD card with its argument and computer CRC7

through the CMD line. A response from the SD card can then be read if the

command is valid and no transmission errors occurred (verified by checking

the CRC7.

 Figure 2.1: SD Card Communication

A SD card controller provides for the reading of data blocks on either a SD or

SDHC (Secude Digital High Capacity) cards. The SD controller was originally

implemented in hardware to acheieve the fastest data and signal processing

possible, but proved very difficult to debug. Subsequently, a slower, but

easier to implement SD controller was created in software. The software SD

controller drives each pin of the SD card. There is no need for a regular clock

Page 8 of 18

signal on the CLK pin of the SD card. To use, first the SD card is identified and

initialized, data can then be read by sending block-read (512 bytes)

commands to the SD host data bus. In the beginning, the SD card did not

respond to commands given by the software controller. After inspection it

was found that this was due to a misconfiguration of pin direction and

polarity due to little-endian registers in the XPS GPIO IP-core.

2.2 FAT File System

The SD card was formatted with the FAT32 file system. An independent FAT

file system library (software) was then used to read files and directories on

the SD card. This FAT file system and file library is platform independent; no

implementation of disk I/O is made by the file system or library, it is

expected that disk I/O will be implemented by the user or host. This file

system and accompanying library can therefore be instantiated on any kind

of memory. The FAT library and file system was successfully operated using

a “black box” approach, it was very easy to use. The main functions and

operating principle on the FAT library is shown below in Figure 2.2.

 Figure 2.2: FAT File Library

 **Many thanks go to Samuel from “I Deer You” for help with this section

Page 9 of 18

2.3 WAVE Files & WAVE File Library

WAVE (Waveform Audio File Format) files are an audio-specialized file

format subset of RIFF (Resource Interchange File Format) files, generic

Microsoft multimedia files. WAVE file format was the chosen format for

music due to the simplicity of WAVE file format and their ease of use – also,

no group member had much experience with complex audio formats or

compression issues. Most simply, a wave file begins with a header section,

including fields containing attributes and parameters, and is then followed

by samples of sound. Of especial importance is the ChunkSize field, it

contains the entire file size in bytes, minus 8 bytes for the previous ChunkID

and ChunkSize fields. Standard WAVE file format is shown below in Figure

2.3.

Figure 2.3: Standard WAVE File Format

Page 10 of 18

New WAVE ,files, however, do not exactly follow the standard WAVE file

format described above, they follow an “extended WAVE file format”. This

presented a few problems for us in trying to read the size of the data segment

in the WAVE file header. This problem was remedied by assuming an extra 2

bytes of data existed before the audio data section began. Additionally

creating problems for us was the little-endian convention of most fields.

Little-endian storage convention means that bytes are stored with their least

significant bit first and later have to be ‘reconstructed’ to the correct form

before manipulation of processing. Reconstructing data of 16 and 32-bit

integers was accomplished in the audio controller, detailed in the hardware

section of this report.

An independent WAVE file library was implemented, allowing the FPGA-pod

to look for WAVE files with the correct sample rate, read WAVE files, and

send audio data to the audio controller, detailed in the hardware section.

Population of a playlist is made possible through the use of this WAVE file

library. Using functions from the library, the SD card is scanned and then an

entry is made in the playlist corresponding to a WAVE file in the directory to

later be used for user interfacing.

2.4 Desktop Testing

The FatFS library enables files from the SD-card to be read when the SD

controller is hosting the Fat file system by implementing the disk I/O. In

reality, it is difficult to test portions of applications on the Nexys2 board.

Therefore a mock implementation of the disk I/O data was stored in a static

char vector and this application was tested on a desktop computer. In order

to be able to emulate this static char vector as drive it can be formatted with

the f_mkfs (mk-make fs-file system) FatFS function. In the beginning when

the test program is started, the static char array is initialized to all zeros (c

standard), and the FatFS library treats it as a drive that is not yet formatted.

When running the system on the board there is not enough memory for the

Page 11 of 18

f_mkfs function, nor all the test data that is later stored, but when running the

application on the board the SD card is initialized with a file system when the

application starts and data can then be stored on it. After initializing the

mock disk implementation files are written to it. Because of experience, Java

programming language and the JNI (Java Native Interface) was used – the

FatFS functions are wrapped in Java classes, making debugging easier (at

least for Java programmers). The Java classes include file implementation

and an Input-/Output-Stream used to create files and directories as well as

writing data into them. After all the data is written into the mock drive the C

coded application to be tested can be called. Seen from the FatFS layer, there

is difference between running an application to be tested on the real board.

2.5 User Interface

The user interface was implemented entirely in software. Polling-based push

buttons on the Nexys2 FPGA board allow the user to play/pause the

currently selected song or skip to the next/previous song in the

aforementioned playlist. Once a song is selected, its title is sent to LCD by

means. The LCD is driven by the on-board UART (hardware), operating at

9600 bds. Printing the song title on the LCD is accomplished with the

xilprintf() function, this is because stdout is set to be the UART.

Page 12 of 18

3. Hardware Architecture

This section details the hardware portion of FPGA-pod.

3.1 Audio IP-Core

An audio IP-core, shown below in Figure 3.1, was built to handle audio and

signal processing. The little-endian stereo data stored in the WAVE files are

sent to the audio FIFO. This FIFO is 32 bits wide with a depth of 1024 fields

to store up to two SD card data blocks. As mentioned before, this core is

responsible for correctly reconstructing little-endian convention data. An

included splitter rebuilds data in the correct format for each right and left

audio channel. Next, the 16-bit data (one 8-bit vector for both the right and

left channel) is sent to the digital-to-analog converter.

The audio controller in combination with the sd controller presented one of

the major problems for this project. At high sampling rates (~44,100 KHz –

CD-quality), the audio controller can read the processed data stored in audio

FIFO queue faster than the SD controller can read and store audio samples in

the same queue, resulting in losses and cuts in the audio data.

Figure 3.1: Audio Controller

Page 13 of 18

3.2 Digital-to-Analog Converter

As seen above in Figure 3.1 and below in Figure 3.2, audio samples are

passed to a pair of digital-to-analog converters (DACs) after they are

processed by the audio controller. These DACs produce analogue otuput

signals from digital input signals via pulse-with modulation. Because no

external DAC module was available, a DAC was implemented in hardware on

the FPGA board.

The DACs implemented here use a traditional sigma-delta structure often

employed for audio applications. An application note made by Xilinx was

used to design these DACs. Two 16-bit DACs using a clock frequency of 150

MHz were designed. This frequency seems to be very high but is (in theory)

is needed to decrease audible noise.

 Audio output through a pair of speakers or headphones connected to the

amplifier is audible and recognizable, but very noisy. We believe this is due

to the lack of a traditional external DAC and subsequent proper signal

filtering. Audio signals are not filtered properly and a lot of noise exists in

the output. The DAC was this projects largest problem and at the time of this

report is still unsolved.

Here is a list of what we’ve tried to make this block work:

 Decrease the block frequency

 Reduce the precision of DACs down to 8 bits

 Changing the sampling frequency of the wave files.

Page 14 of 18

 Figure 3.2: Digital-

 To-Analog Converter

4. Installation & User Manual

Figure 4: FPGA-pod Setup

Page 15 of 18

4.1 Installation

No installation is necessary. Simply load a SD or SDHC card with your

favorite, properly formatted audio into the SD card reader and power on the

FPGA-pod.

4.2 User Manual

1. Ensure all components are connected as shown in Figure 4

2. Insert SD or SDHC card preloaded with WAVE stereo audio sampled (16-

bits) at 6,000 KHz into the SD card reader

3. Insert headphone or speaker jack into amplifier receiving jack

4. Power and turn on Nexys2 FPGA board, 1st audio file is played

automatically

5. Use the left most push-button to play or pause the currently selected song

6. Use the middle 2 buttons to skip to the next or previous song

7. Use the right most push-button to reset the FPGA-pod

5. Problems & Suggestions

5.1 SD Controller

The SD controller was originally planned to be implemented in hardware.

Work was accomplished on a hardware SD card controller, but it proved very

difficult to debug. Because of this, a SD controller was implemented

software. While this software controller was much easier to test and debug,

the controller was also slow – the software is responsible for driving each SD

pin directly. When using high sampling rates, ~44,100 KHz (CD quality),

reading audio in the audio sample FIFO queue happened faster than the SD

controller could write this data to the queue. This resulted in cuts of data

and audio flow as well as loss of audio data. In efforts to remedy this issue,

the FIFO audio queue size increased from 512 to 1024 32-bit samples and

the MicroBlaze system clock was also been increased from 50 MHz to 75 MHz

Page 16 of 18

(this frequency cannot be increased further due to timing constraints). Using

a maximum sampling frequency of 8,000 KHz prevents the audio FIFO queue

from emptying. This issue would be easily solved given more time to debug

and implement a SD controller designed in hardware

5.2 Little-Endian Convention

Many problems were encountered over the development process due to

Xilinx’s little-endian standard. Little-endian standards were also found in the

WAVE file requiring the implementation of an audio splitter to reconstruct

reverse-byte stored 16 and 32 bit data fields.

5.3 Extended WAVE File Format

The WAVE file format detailed in this report is the standard WAVE file

format. New WAVE files, however, follow a slightly more obscure and quite

different version of this format known as “extended WAVE file format”. Due

to this standard, difficulties were experienced when trying to read the size of

the data segment in the WAVE file following the header information.

5.4 Digital-to-Analog Converter

The digital-to-analog converter presented out biggest and at the time of

writing still unsolved problem. The lack of a traditional external digital-to-

analog converter means lack of proper signal filtering. Pulse-width-

modulation dignals produced by the on-board hardware implemented DACs

are connected directly to the inputs of the PmodAmp module. Because these

signals are not properly filtered by the on-board DACs before they are sent to

amplifier, a lot of noise exists in the output. We believe this issue would be

easily solved through the implementation of an external digital-to-analogue

converter module.

Page 17 of 18

6. Lessons Learned

6.1 Time Constraints

Estimating the amount of time required to complete embedded systems

projects, or any portion of a single project, is a difficult thing to do and time

required is easily underestimated

6.2 Design & Implementation

The Pros and cons of a design must be considered when choosing to

implement that design in primarily either hardware or software. For certain

applications hardware implementation is a much better choice. For other

projects with demanding deadlines software implementation is often easier

to implement and debug. In the case of the SD controller, a design in

hardware would have functioned better, but quickly implementing a design

in software functionality to be proven within the given time constraints.

7. Conclusions

Program memory was increased to a maximum of 32 KB. This memory cannot be

further expanded due to a lack of BRAMs. The finished FPGA-pod project is quite

large, at least for the Nexys2 board, occupying about 29 of the available 36 KB or

memory – this project will not successfully compile unless the size optimization

parameter (-os) is specified.

The most challenging portion of this project has been the implementation of the SD

controller. Due to quickly approaching deadlines the hardware SD controller was

not finished

Page 18 of 18

Designing and successfully creating hardware in the real world is more difficult, but

also much more rewarding than simply designing hardware on paper.

Suggested future work and improvements for this project include the successful

implementation of a hardware-based SD controller, the addition of an external

digital-to-analog converter complete with proper signal filtering capabilities,

decompression capabilities providing support for mp3 or additional file formats,

and added user/menu actions

8. Contributions

**The drafting of documents (initial proposal & presentation, final report &

presentation, etc.) was assisted by all group members.

Pierre-Adrien Lefebvre :

 SD Controller, Audio Controller, FAT File System

Kristian Samppa:

 SD Controller, Audio Controller, LCD Interface

Matt Moles:

 Push Buttons, User Menus, LCD Interface

