
Appendix A - FAT12 overview

FAT12 is the file system that my 32 MB SD card was formatted with (all SD cards > 4 GB
are formatted with FAT32). FAT16 is almost identical and FAT32 is quite similar. The 12, 16
and 32 suffixes are the size of the File Allocation Table (FAT) entries. More to that later on. I
developed a FAT12 library in which I could only read files. In this overview I want to share
with you some of the things that I learned.

Before I write any further I will recommend you to also check Wikipedia and especially this
tutorial (the latter explains FAT32 so be aware that there are some differences).

Creative Commons License

I have used a lot of text and tables from Wikipedia. Alas, this text, including all images, is
(as Wikipedia articles are) released under the CC-SA-3.0 license (Creative Commons
Attribution-ShareAlike 3.0). That means that you are free to copy, modify and sell this text
provided that you pass on the same rights for the work that is derived from this article and
that you must attribute the work to the author, in this case Wikipedia and Samuel
Skånberg.

Master Boot Record

Among the biggest problems I had was that I mixed up the Master Boot Record (MBR) with
the Volume Boot Record (VBR).

A Master Boot Record is the 512 byte boot sector which is the first sector (LBA sector 0) of a
partitioned storage device, such as a hard drive or in our case an SD card1. One of the
MBR's tasks is to hold the partition table and that is the only thing we care about. The
partition table has four entries (each 16 byte in size) and they tell us where on the device
we can find the partitions.

The Volume Boot Record however is the first sector of a non-partitioned storage device
(such as a floppy) 2.

In other words, it's easier if you want to read the file system on a non-partitioned device
because then you don't have to worry about the MBR. If you have a partitioned device (like
an SD card, USB memory stick, etc.) you first have to read the MBR, look at the first
partition table entry, jump to the sector it tells you, and there you will find the Volume Boot
Record.

To make this as clear as possible, here is an image of the structure of a device which is
partitioned.

1. http://en.wikipedia.org/wiki/Master_boot_record
2. http://en.wikipedia.org/wiki/Volume_boot_record

http://en.wikipedia.org/wiki/File_Allocation_Table
http://www.pjrc.com/tech/8051/ide/fat32.html
http://www.pjrc.com/tech/8051/ide/fat32.html
http://creativecommons.org/licenses/by-sa/3.0/
http://en.wikipedia.org/wiki/Master_boot_record
http://en.wikipedia.org/wiki/Volume_Boot_Record


So, if you have a partitioned device, you first have to read the Master Boot Record (and look
into the partition table entries) to find out where the first partition begins. The partition
begins with the Volume Boot Record (aka boot sector, aka Volume ID). If you don't have a
partitioned device (such as a floppy disk) then you know that the first sector is the Volume
Boot Record.

If you want to examine the contents of an SD card or a USB memory stick by dumping the
device content to an image file on disk, make sure that you dump the whole device and not
only the partition. In Linux, if your USB stick has been mounted from /dev/sda1 do:

$ dd if=/dev/sda of=dump.img

Like that you will get the whole device, starting with the Master Boot Record. If you do the
following:

$ dd if=/dev/sda1 of=dump.img



then you will only dump the content of partition1 on the device.

Partition table entry

Each entry in the partition table is 16 byte in size and has the following structure

Offset
Field

length
(bytes)

Description

0x00 1 status (0x80 = bootable (active), 0x00 = non-bootable,
other = invalid)

0x01 3 CHS address of first block in partition.
The format is described in the next 3 bytes.

0x01 1 head
0x02 1 sector is in bits 5–0; bits 9–8 of cylinder are in bits 7–6
0x03 1 bits 7–0 of cylinder
0x04 1 partition type

0x05 3 CHS address of last block in partition.
The format is described in the next 3 bytes.

0x05 1 head
0x06 1 sector is in bits 5–0; bits 9–8 of cylinder are in bits 7–6
0x07 1 bits 7–0 of cylinder
0x08 4 LBA of first sector in the partition
0x0C 4 number of blocks in partition, in little-endian format

We are interested in the LBA of first sector in the partition. LBA is short for Logical Block
Addressing and is in most case the same as sector address. Normally (but not always) one
sector or on Logical Block is 512 bytes. If we multiply the LBA with 512 bytes, then we
know at what address the first partition starts.

It could also be a good idea to check the partition type. For FAT12 the type is 0x01. FAT16
is 0x04, 0x06 or 0x0E. For FAT32 it's 0x0B or 0x0C.

General overview of FAT12

The layout of the file system is as follows:

• Reserved sectors. The reserved sectors start with the boot sector (aka Volume ID).
Then follows a number of other sectors we don't care about.

• File Allocation Table 1
• File Allocation Table 2 (identical to FAT1)
• Root directory
• Data region

What differs FAT32 from FAT12 and FAT16 may be interesting to know, in FAT32 there is no
special place for the root directory, it is stored in the start of the data region. Because
FAT32 has no special region for its root directory, its data region starts where FAT12 and



FAT16s root directory would start. So one might say that for all version of FAT, the root
directory starts after the File Allocation Tables.

Volume Boot Record (aka Volume ID)

Now when we know were the partition begins, we know where the FAT file system begins.
And the FAT file system begins with a sector called the Volume ID or simply the boot sector.
This sector contains a lot of information. Most of it doesn't matter to much for us. The
things we care about are in bold. Be aware that we only handle FAT12. Some things like
"Sector per file allocation table" are for FAT32 stored in a different place.

Byte
Offset

Length
(bytes) Description

0x00 3
Jump instruction. This instruction will be executed and will skip past the rest of the (non-
executable) header if the partition is booted from. See Volume Boot Record. If the jump
is two-byte near jmp it is followed by a NOP instruction.

0x03 8

OEM Name (padded with spaces). This value determines in which system disk was
formatted. MS-DOS checks this field to determine which other parts of the boot record
can be relied on. Common values are IBM 3.3 (with two spaces between the "IBM"
and the "3.3"), MSDOS5.0, MSWIN4.1and mkdosfs.

0x0b 2 Bytes per sector. A common value is 512, especially for file systems on IDE (or
compatible) disks. The BIOS Parameter Block starts here.

0x0d 1
Sectors per cluster. Allowed values are powers of two from 1 to 128. However, the
value must not be such that the number of bytes per cluster becomes greater than 32
KB.

0x0e 2 Reserved sector count. The number of sectors before the first FAT in the file system
image. Should be 1 for FAT12/FAT16. Usually 32 for FAT32.

0x10 1 Number of file allocation tables. Almost always 2.

0x11 2

Maximum number of root directory entries. Only used on FAT12 and FAT16, where
the root directory is handled specially. Should be 0 for FAT32. This value should always
be such that the root directory ends on a sector boundary (i.e. such that its size
becomes a multiple of the sector size). 224 is typical for floppy disks.

0x13 2 Total sectors (if zero, use 4 byte value at offset 0x20)

0x15 1

Media descriptor

0xF0
3.5" Double Sided, 80 tracks per side, 18 or 36 sectors per track (1.44MB or
2.88MB). 5.25" Double Sided, 15 sectors per track (1.2MB). Used also for other
media types.

0xF8 Fixed disk (i.e. Hard disk).

0xF9 3.5" Double sided, 80 tracks per side, 9 sectors per track (720K). 5.25" Double
sided, 40 tracks per side, 15 sectors per track (1.2MB)

0xFA 5.25" Single sided, 80 tracks per side, 8 sectors per track (320K)
0xFB 3.5" Double sided, 80 tracks per side, 8 sectors per track (640K)
0xFC 5.25" Single sided, 40 tracks per side, 9 sectors per track (180K)

0xFD 5.25" Double sided, 40 tracks per side, 9 sectors per track (360K). Also used for
8".



0xFE 5.25" Single sided, 40 tracks per side, 8 sectors per track (160K). Also used for
8".

0xFF 5.25" Double sided, 40 tracks per side, 8 sectors per track (320K)
Same value of media descriptor should be repeated as first byte of each copy of FAT.
Certain operating systems (MSX-DOS version 1.0) ignore boot sector parameters
altogether and use media descriptor value from the first byte of FAT to determine file
system parameters.

0x16 2 Sectors per File Allocation Table for FAT12/FAT16
0x18 2 Sectors per track
0x1a 2 Number of heads
0x1c 4 Hidden sectors

0x20 4 Total sectors (if greater than 65535; otherwise, see offset 0x13)

From this we can now calculate where the FATs begin, where the root directory begins and
where the data region begins:

• Address of first FAT: (Start sector for partition 1 + Reserved sector count) * Bytes
per sector

• Address of root directory: Address of first FAT + Number of FATs * Sectors per FAT
• Address of data region: Address of root directory + Maximum number of root

directory entries * 32

Root directory

I will start to explain the root directory. This is because you don't really need the File
Allocation Table... if all your files are smaller than the cluster size. However, if your files are
bigger than the cluster size, you need the FAT to know where the rest of your file continues
so that you can "link them together". But that will be explained later on.

A directory table is a special type of file that represents a directory (also known as a folder). Each file or
directory stored within it is represented by a 32-byte entry in the table. Each entry records the name,
extension, attributes (archive, directory, hidden, read-only, system and volume), the date and time of
creation, the address of the first cluster of the file/directory's data and finally the size of the file/directory.
Aside from the Root Directory Table in FAT12 and FAT16 file systems, which occupies the special Root
Directory Region location, all Directory Tables are stored in the Data Region. 3

The number of entries in the root directory in FAT12 and FAT16 is limited. However, this
isn't a problem unless you have a lot of files.

Note: To support long file names, a trick has been used. Before each entry, one or multiple
entries can be stored. These entries however, will have a file attributes that is 0x0F (a
combination that won't occur for real entries). So if you don't care about long file name
support, you can just search for an entry that has file attributes that differs from 0x0F.

Directory table entries, both in the Root Directory Region and in sub directories, are of the following
format

3. http://en.wikipedia.org/wiki/File_Allocation_Table#Directory_table



Byte
Offset Length Description

0x00 8

DOS file name (padded with spaces)
The first byte can have the following special values:
0x00 Entry is available and no subsequent entry is in use

0x05 Initial character is actually 0xE5. 0x05 is a valid kanji lead byte, and is used for
support for filenames written in kanji.

0x2E 'Dot' entry; either '.' or '..'

0xE5
Entry has been previously erased and is available. File undelete utilities must
replace this character with a regular character as part of the undeletion
process.

0x08 3 DOS file extension (padded with spaces)

0x0b 1

File Attributes
Bit Mask Description
0 0x01 Read Only
1 0x02 Hidden
2 0x04 System
3 0x08 Volume Label
4 0x10 Subdirectory
5 0x20 Archive
6 0x40 Device (internal use only, never found on disk)
7 0x80 Unused
An attribute value of 0x0F is used to designate a long file name entry.

0x0c 1 Reserved; two bits are used by NT and later versions to encode case information (see
below); otherwise 0

0x0d 1 Create time, fine resolution: 10ms units, values from 0 to 199.

0x0e 2

Create time. The hour, minute and second are encoded according to the following
bitmap:

Bits Description
15-11 Hours (0-23)
10-5 Minutes (0-59)
4-0 Seconds/2 (0-29)
Note that the seconds is recorded only to a 2 second resolution. Finer resolution for file
creation is found at offset 0x0d.

0x10 2

Create date. The year, month and day are encoded according to the following bitmap:
Bits Description
15-9 Year (0 = 1980, 127 = 2107)
8-5 Month (1 = January, 12 = December)
4-0 Day (1 - 31)

0x12 2 Last access date; see offset 0x10 for description.

0x14 2 EA-Index (used by OS/2 and NT) in FAT12 and FAT16, High 2 bytes of first cluster
number in FAT32

0x16 2 Last modified time; see offset 0x0e for description.
0x18 2 Last modified date; see offset 0x10 for description.



0x1a 2
First cluster in FAT12 and FAT16. Low 2 bytes of first cluster in FAT32. Entries with
the Volume Label flag, subdirectory ".." pointing to root, and empty files with size 0
should have first cluster 0.

0x1c 4 File size in bytes. Entries with the Volume Label or Subdirectory flag set should have a
size of 0.

What we care about are the parts in bold:
• The filename
• The file attributes (if it's 0x0F it means that the entry is a long file name entry, skip

those if you don't care about long file names)
• First cluster
• File size

So if we want to look up a file, we first have to examine that the entry is "real". So we want
to skip all entries that has file attributes = 0x0F because those are fake entries that
contains data to support long file name. Those entries have a different format. We also want
to check that the file hasn't been deleted. So we check the first byte/character of the
filename. If it's 0xE5 it means that the file has been deleted and then the entry is useless.

When we have found an entry which is OK, then we'll have a look at the first cluster. The
memory address for the first cluster is calculated as follows, where Cluster number is the
number from the directory table entry (First cluster in FAT12 and FAT16):

Start address for file: Address of data region + (Cluster number-2) * Sectors per cluster *
Bytes per sector

The "-2" is because the first cluster of the Data region is cluster #2 4.

Now, if you know that all your files are smaller than the cluster size, you don't have to
worry about the File Allocation Table. If you know that, you can stop reading right now.
However, if the size of your files are larger, then you have to check the File Allocation Table
to see where the file continues. It's all quite simple. Let's have a look at the famous FAT.

File Allocation Table

As we have said before, the FAT is for checking where your file continues. Since the
partition is divided into clusters (of sizes of about 2 KB - 32 KB), a file can either fit inside a
cluster or not. We can check the file size in the directory table entry to know if it will fit but
we'll need the FAT to know where it continues (if it does). A file can consists of one or
multiple clusters. The File Allocation Table is a table of entries that each corresponds to a
cluster on the partition. The first entry corresponds to the first cluster, the second entry
corresponds to the second entry, etc. This table is used to "chain together" the clusters that
the file consists of. Each entry record on of these thing:

Entry value Description

0x000 Free Cluster

0x001 Reserved value; do not use

4. http://en.wikipedia.org/wiki/File_Allocation_Table#File_Allocation_Table



0x002–0xFEF Used cluster; value is the cluster number for the
next cluster in the file chain

0xFF0–0xFF6 Reserved values; do not use.

0xFF7 Bad sector in cluster or reserved cluster

0xFF8–0xFFF Last cluster in file

As you can see, each entry is 12 bit in size. This is strange and annoying since one entry is
1.5 byte long. One must be careful when reading entries from the FAT because it's easy to
get it wrong. It is consistently little-endian: if you consider the 3 bytes as one little-endian
24-bit number, the 12 least significant bits are the first entry and the 12 most significant
bits are the second5.

FAT example - No files

In a file system that has been newly created and has no files in it, the FAT would look like
this

0xFFF 0xFF0 0x000 0x000 0x000 0x000 0x000 0x000

0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000

The first cluster of the Data Region is cluster #2. That leaves the first two entries of the FAT
unused. But we don't care about those first two entries because they don't tell us stuff we
want to know.

FAT example - One small file

If we now create a file, file1.txt with the content "Hello", we will get the following table:

0xFFF 0xFF0 0x000 0xFFF 0x000 0x000 0x000 0x000

0x000 0x000 0x000 0x000 0x000 0x000 0x000 0x000

This means that the file that uses cluster number 3 (that is file1.txt) has no more clusters in
its cluster chain. That is only natural since the content "Hello" is of course less than the
cluster size (which is approximately 2 KB - 32 KB).

FAT example - One big file

If we create a that contains a lot of information (or at least a lot more than "Hello") we will
get a FAT that looks like:

0xFFF 0xFF0 0x000 0x004 0x005 0x006 0x007 0x008

0x009 0xFFF 0x000 0x000 0x000 0x000 0x000 0x000

5. http://en.wikipedia.org/wiki/File_Allocation_Table#File_Allocation_Table



So, the file starts at cluster number 3 (which corresponds to the 4th entry in the FAT),
continues in 4, etc. And we can see that it also uses cluster number 9 but when we look at
the entry for that cluster we see 0xFFF which means that the file has no more clusters.

FAT example - 3 files and fragmented

It's not always so that the files clusters are store adjacent to each other. They may also me
fragmented. If we create 3 files in this order: file1.txt, file2.txt and file3.txt, we will get the
starting cluster numbers as follows:

• Starting cluster for file1.txt: 3
• Starting cluster for file2.txt: 4
• Starting cluster for file3.txt: 5

If we then make file1.txt big so that it spans over many clusters we can see that the cluster
chain for file1.txt looks like in this FAT

0xFFF 0xFF0 0x000 0x006 0xFFF 0xFFF 0x007 0x008

0x009 0x00A 0x00B 0xFFF 0x000 0x000 0x000 0x000

We can see that file2.txt and file3.txt don't use any more clusters (since the 5th and the 6th
entry are 0xFFF).

Code example for reading the MBR and VBR

Since getting the FAT12 information is the first step if you want to read files, here is some
code. This code is under the public domain as far as is lawfully possible.

In C, this code would read the FAT12 information into the program. The function
load_int(void *ptr) reads an integer starting at the address ptr and load_short(void *ptr)
does the same but with a short.

struct {
/* General Volume Boot Record */
unsigned short bytes_per_sector;
unsigned char sectors_per_cluster;
unsigned short reserved_sector_count;
unsigned char number_of_fats;
unsigned short max_root_dir_entries;

unsigned short sectors_per_fat;
unsigned int root_dir_sector;
unsigned char fat_type[8];
unsigned short signature;

unsigned int fat_base; // What sector does the FATs start at
unsigned int data_start_addr; // What address does the data regions

start at



} fat12;

char buffer[512];
unsigned char partition1_type;
unsigned int partition1_begin_sector;
unsigned int global_offset;

/* read MBR */
seek_from_start(0);
read_from_io(buffer, 1, 512);

partition1_begin_sector = load_int((buffer+446+8));

global_offset = partition1_begin_sector*512;

/* read VBR into buffer */
seek_from_start(global_offset);
read_from_io(buffer, 1, 512);

/* VBR: volume boot record */
fat12.bytes_per_sector = load_short(buffer+0x0b);
fat12.sectors_per_cluster = buffer[0x0d];
fat12.reserved_sector_count = load_short(buffer+0x0e);
fat12.number_of_fats = buffer[0x10];
fat12.max_root_dir_entries = load_short(buffer+0x11);
fat12.sectors_per_fat = load_short(buffer+0x16);
fat12.signature = load_short(buffer+0x1fe);

/* At what sector does the fat table begin? */
fat12.fat_base = partition1_begin_sector + fat12.reserved_sector_count;

/* At what sector does the root directory start at? */
fat12.root_dir_sector = fat12.fat_base + fat12.sectors_per_fat*fat12.number_of_fats;

/* At what address does the data region start at? */
fat12.data_start_addr = fat12.root_dir_sector*fat12.bytes_per_sector +
fat12.max_root_dir_entries*32;


	Appendix A - FAT12 overview
	Creative Commons License
	Master Boot Record
	Partition table entry

	General overview of FAT12
	Volume Boot Record (aka Volume ID)
	Root directory
	File Allocation Table
	FAT example - No files
	FAT example - One small file
	FAT example - One big file
	FAT example - 3 files and fragmented

	Code example for reading the MBR and VBR


