
2D Physics engine
Embedded Systems Project, EDA 385

Institution of Computer Science

Fredrik Bondza, dt06fb2
Simon Lindgren, dt05sl0
Peyman Pouyan, sx07pp6

18 Oktober 2009



Abstract

This report describes the development of a two-dimensional physics engine as
an embedded system on a Digilen Nexys2 FPGA board. The details of both
the hardware and software design is presented. Encountered problems and
solutions are listed. Finally the lessons and conclusions which this project
resulted in is presented.



Contents
1 Introduction 1

1.1 Difference compared to proposal . . . . . . . . . . . . . . . . . . 1

2 Physics engine 2
2.1 World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Collision detection . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 PS/2 Controller 3

4 VGA Controller 4
4.1 PLB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 BRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 Implementation of the VGA Controller . . . . . . . . . . . . . . . 6

5 MicroBlaze 6

6 Problems and Solutions 6
6.1 Floating point operations . . . . . . . . . . . . . . . . . . . . . . 6
6.2 Limited program memory . . . . . . . . . . . . . . . . . . . . . . 7
6.3 Synchronize reads from BRAM to VGA controller . . . . . . . . 7

7 Possible improvements 7
7.1 Object rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.2 Hardware rendering algorithm . . . . . . . . . . . . . . . . . . . . 8
7.3 Improved collision detection . . . . . . . . . . . . . . . . . . . . . 8

8 Lessons and Conclusions 8

9 Installation and user manual 8

10 Contributions 9



1 Introduction

The goal of this project was to implement a basic physics engine which would
render all objects onto a screen running on a Nexys2 FPGA board. The engine
should simulate gravitational acceleration and collision detection for all of the
objects in the world. The user should be able to add objects, via a keyboard,
to the world so that multiple objects could be simulated at the same time.

Figure 1: Basic architecture

The basic architecture of the system is shown in figure 1. The hardware
consists of a VGA controller with a built-in BRAM, an XPS PS/2 controller,
an XPS interrupt controller and a MicroBlaze softcore processor. In software
there are two important parts, the physics engine and an interrupt routine.

1.1 Difference compared to proposal

The initial project idea was to be able to simulate objects of different shapes
in the physics engine. It was intendet to be able simulate squares and circles.
This would require a general way of describing objects so that the collision
detection algorthim and drawing algorithm could easily handle both shapes.
Because this would make alot of functions much more complicated the engine
can not simulate circular objects, instead the engine only handles square
objects.

Also there is no collision detection algorithm implemented in hardware. This
is mostly because the software collision detection algorithm was very fast and
thus it would not have a noticeable affect on the performance.

1



2 Physics engine

Physics engines are used in video games to simulate realistic behaviour for all
objects inside the game. For example to check if a shot hit the target or to
calculate how a car will handle when turning into a corner.

The basic physics engine was first implemented on a standard computer and
then ported to the FPGA board. This made the development of the engine
somewhat simpler since it makes debugging easier. The approach was to first
implement physics for a single particle and then extend the engine to handle
objects of different sizes.

To make testing of the simulations easier each part of the simulations were
added step by step, i.e. first updating position, velocity, acceleration and force
of each object. Then a simple collision detection to check for collisions with
the world and then object to object collision was implemented.

Figure 2: Physics engine dataflow

Figure 2 shows the physics engines different tasks. When the program is
started the engine, PS/2 controller and the interrupt routine used to handle
PS/2 interrupts is initiated. This means setting up global variables, pointers,
vectors and registering interrupt routines which is needed for the program to
work as intended.

2.1 World

The world which is visible to the user is represented by the edges of the
drawing area on the screen. In the physics engine the size of the world is
changed, compared to the screen, to achieve greater precision when performing
calculations on objects.

2



2.2 Objects

The engine can simulate multiple sqaures existing in the world at the same
time. Each object has four vectors representing position, velocity, acceleration
and force. In order to be able to perform collision detection each of the objects
also have the minimum and maximim values of the space it occupies on each
axle.

2.3 Gravity

All of the objects in the world is affected by the gravitational acceleration.
This is always active and applied everytime an object is updated. Just like in
the real world this will make all of the objects fall to the ground, which would
be represented by the bottom of the drawing area on the screen.

2.4 Collision detection

There are two basic types of collision detection, object to world collision and
object to object collision.

Collision between an object and the world is quite simple since the world is
non-moving and in this case it is considered to have inifinite mass. This means
that when a collision occurs only the colliding object will be affected. So the
colliding object will simply bounce of the ground, like a for example a tennis
ball. It will also loose some of its kinetic energy with each collision.

Performing collision detection between two objects is much more complicated
than collision between an object and the world because both of the objects can
be moving and they can have different masses. This means that the two object
should have a different amount of force applied to them when the collision
occurs.

A problem which might occur when trying to detect collision between objects
is that if the objects have very high velocities they may pass eachother so that
they never overlap between two updates, even though they would have collided
in the real world. Although in this case the size of the world is limited and
relatively small, and the engine has relatively high precision, thus preventing
this problem.

3 PS/2 Controller

A PS/2 controller was needed in order to be able to control the physics engine.
For example add objects, set object size and remove all objects from the world.

At first a PS/2 custom IP was created to handle input from the keyboard.
The architecture of this custom PS/2 controller is shown in figure 3.

This architecture worked on the falling edge of the PS/2 clock then the shift
register will store the data. The Finite State Machine(FSM) will look for 11

3



Figure 3: PS/2 Controller design

bits of PS/2 data and when those are found the last flip-flop will output the
scan code.

This design could receive input from the PS/2 keyboard as intended. However
it would not work with the MicroBlaze processor and an interrupt controller to
generate interrupts when a key was pressed.

Therefore this design was abandoned and instead the XPS PS/2 controller
combined with an XPS interrupt controller was used from the Xilinx EDK
library.

Since the used PS/2 component is part of the standard XPS library the
number of slices it occupies is not of any importance for this report thus it is
not mentioned.

4 VGA Controller

The VGA controller consists of three major parts, those are the PLB interface
and control logic, the BRAM and the VGA controller itself. A bitmap is
stored in the BRAM which represents the picture to draw. The processor can
write directly to this BRAM to change the image on the screen. The VGA
controller reads one word from the BRAM once every 64th clock cycle, with a
50 Mhz clock, to draw onto the screen. Every bit in the memory is directly
mapped to a pixel on the screen.

Each of the parts shown in figure 4 is discussed in detail in the following
subsections.

The device occupancy for the VGA controller according to the Xilinx EDK
was 2% of the total amount of slices.

4



Figure 4: VGA Controller design

4.1 PLB

The PLB is created using the create peripheral function in Xilinx Platform
Studio. Then the PLB logic was slightly modified to read from the PLB and
write to the VGA controller BRAM. It is only possible to read complete words
from the bus, i.e. 32 bits, instead of reading and writing bytes. To make
addressing the VGA controller easier from software the addresses sent to the
PLB controller is right shifted twice which means that the software can
address the VGA controller just like a normal vector.

The downside of this is that when addressing the VGA controllers BRAM it
will require four times the amount of addresses when writing to the VGA
controller. But the result this is that it will be easier and more obvious how to
address the VGA controller from software.

4.2 BRAM

The BRAM component of the VGA controller is configured to only support
writes from the PLB and the reads from the VGA controller. This means that
there only exists one-way communiction from the MicroBlaze to the VGA
controller. Two-way communication is unnecessary because the software does
not need to know which pixels that should be shown on the screen.

The size of the VGA controller BRAM is 12.5 KB. The whole picture which
should be displayed onto the screen is stored in the BRAM as a bitmap, this
means that one bit in the memory directly represents a pixel on the screen.
The BRAM address signal is 12 bits wide, this means that it is possible to
address up to 16 KB of memory. However there is no functionality to check if
this occurs and thus addressing more than 12.5 KB may result in strange

5



behaviour of the whole program.

4.3 Implementation of the VGA Controller

There are two major parts of the VGA controller each of them controls one
task.

First there is the synchronizer which generates the vertical and horizontal
synchronization signals which is needed for the screen to be able to display the
signals. It also generates two signals to keep track of the pixel position on the
screen. SIGNALS???

The second part is the controller itself which handles the signals from the
synchronizer component to decide which color should be painted for each
pixel. The picture on the screen consists of three parts, a background, a
border and the drawing area. The background which is just a grid that is
drawn where the border and drawing area is not located. Then the border
surrounds the drawing area and the drawing area is where the data written
from the physics engine will appear.

5 MicroBlaze

The MicroBlaze used in this project had the Floating Point Unit(FPU)
enabled in order to be able to do fast floating point calculations. Therefore it
is relevant to mention the device occupancy for the MicroBlaze processor
including the FPU since that will differ from the normal processor size.

The MicroBlaze processor including the FPU occupied 12% of all avalable
slices.

6 Problems and Solutions

6.1 Floating point operations

When developing the physics engine the initial approach was to use floating
point numbers to represent the position, velocity, acceleration and force with
high precision. The problem this presented was that the calculations could not
be done fast enough beacuse of the more complicated nature of the floating
point number representation. Even though the hardware Floating Point
Unit(FPU) was used with mircoblaze the calculations could not be performed
fast enough.

The solution to this problem was to try to eliminate as many of the floating
point calculations as possible, since the processor can compute integer
operations many times faster than floating point operations. This approach
presents another problem which is that the precision is lost when using
integers instead of floating point numbers.

6



To compensate for this the position and size of all objects was multiplied with
a constant, which would represent a single pixel. This means that moving an
object by the amount of the constant in either axle would make the object
move one pixel on the screen. Much like a fixed point representation of a
number except that this needs no conversion. The on-screen pixel position is
available with just a simple shift operation.

6.2 Limited program memory

The size of the program is limited by the size of instruction memory available
on the board. In this case the program was too large to fit into the memory
when printout functions was used. This also resulted in debugging issues since
no information about objects in the physics engine could be printed.

One of the solutions to this problem is to set the compiler to optimize the size
of the program. This means that the size of program might decrease but the
performance will also decrease. Another solution is to remove any printout
functions since string formatting options and print functions require quite alot
of instruction memory. Avoiding unnecessary instructions and assignments is
also a good idea, in other words the user optimizes the code himself.

6.3 Synchronize reads from BRAM to VGA controller

Since the VGA controller uses a 32 bit buffer, this means that after a 32 clock
cycle period the buffer has to be updated.

The hardware runs at a frequency of 50 Mhz and the pixel position is updated
at a rate of 25 Mhz. This combined with the one clock cycle delay of the
BRAM created a problem. If a read is performed when there is only one pixel
left to draw in the buffer then the buffer will be updated and the pixel will get
an incorrect value. If the read was performed on the first pixel in the buffer
then the data would arrive too late and old values from the buffer would be
used before the new data arrived.

This problem was solved by modeling the read operation as a FSM. The FSM
has two states, a read state and a idle state. The idle state is used when there
is no need to update the buffer. In the read state, data is read from the
BRAM and assigned to the buffer signal. That way the new buffer value will
be available the next clock cycle which solves this problem.

7 Possible improvements

7.1 Object rotation

One way to improve the physics engine is to add code which can calculate
rotation on objects. This would give a more realistic simulation. However
making rotational calculations on objects would probably require to represent
objects by just using vectors which means that each update iteration would

7



take longer time. When rotations are taken into account the collision detection
part of the engine will not work and would have to be changed to a more
advanced algorithm.

7.2 Hardware rendering algorithm

Another improvement would be to move the rendering algorithm into
hardware, this would speed up the program but the effect would probably not
be noticeable to the user. The current algorithm is very fast due to the fact
that the only kind of shape to draw is squares, if other shapes would be
introduced the drawing algorithm would probably need to be implemented in
hardware.

7.3 Improved collision detection

The collision detection algorithm could be improved by changing it to a more
general algorithm which can handle objects of different shapes and rotating
objects, i.e. objects at an angle compared to the x and y axis. The current
collision detection algorithm is dependent upon how the objects is represented
and will not work if all of the objects are represented by just using vectors.
Since this would be more complex it would probably also have an impact on
performance. Therefore a more complex collision detection algorithm would be
better to implement in hardware.

8 Lessons and Conclusions

When software is developed it is easier to start out on a normal computer and
then port the software. This is because it is easier to debug the program on a
normal computer since there is not the same limitations on instruction
memory, therefore printouts are always available.

It is also a good idea to get familiar with the tools before starting a new
project, which components are available.

When writing VHDL code always simulate everytime something is added or
changed. There is usually some small errors or bugs which will be extremely
hard to find otherwise.

9 Installation and user manual

To test this project an archive with the all of the project files are needed.
Then the archive needs to be unpacked into a project folder.

Then open the project in the Xilinx EDK using the unpacked project files.
When the project is open, choose device in the menu and then in the submenu
click update bitstream.

8



When the system is synthesized and compiled, upload the download.bit file
from the implementation folder to the board.

When the program is running on the board then the followin keys can be used.
Note that the simulation must be paused before any command can be
executed.
Key Command
Space Pause simulation
Enter Resume simulation
Esc Remove all objects
P Set random speed for all objects
C Create a new object
W Move object up
S Move object down
A Move object left
D Move object right
+ Increase object size
- Decrease object size
0-9 Set object speed

The commands move object, set size and speed can only be used when a new
object has been created.

10 Contributions

The following table contains the contributions from each of the group
members during this project.

Task Responsible
Physics engine Fredrik Bondza
Port engine to board Fredrik Bondza
VGA controller Simon Lindgren
Rendering algorithm Simon Lindgren
PS/2 controller Peyman Pouyan
Section 1 Fredrik Bondza
Section 2 Fredrik Bondza
Section 3 Peyman Pouyan
Section 4 Simon Lindgren
Section 5 Fredrik Bondza
Section 6 Simon Lindgren
Section 7 Fredrik Bondza
Section 8 Fredrik Bondza
Section 9 Simon Lindgren

9


