Embedded Systems, Advanced Course

ZUMA Arcade Game
Final Report

Ang, Lay Hong (sx07la2@student.lth.se)
Chaiwat Sittisombut (sx07cs2@student.lth.se)
Lim, Wee Guan (sx07wl2@student.lth.se)

November 5, 2008

Abstract

This report documents the development of an embedded version of an arcade
game that runs on a Xilinx Spartan3E-1200 FPGA on a Digilent Inc. Nexsys2
development board. A Microblaze processor, together with Xilinx provided
hardware blocks and custom VHDL blocks were coupled together with the game
software to allow the User to play the game via a PS/2 keyboard and to receive
outputs from the game via a VGA monitor and the seven-segment display on the
board. The resulting system consumes 22 kB of the 32kB of memory available
to the Microblaze for code and data storage and utilizes 95 % of the available
slices on the FPGA.

Contents

1 Introduction

1.1 ZUMA

1.2 Obtaining and Building the Project.
1.3 Hardware Requirements
1.4 Organization of the Report
1.5 Contributions L o

2 Architecture
2.1 Hardware Architecture

2.1.1
2.1.2
2.1.3
2.14
2.1.5
2.1.6

PS/2 Controller. L
Seven Segment Controller
VGA Controller
Timer
UART and Interrupt Controller
Deviations from Proposed Design

2.2 Software Architecture

2.2.1
2.2.2

3 Hardware

Timer Counter
PS/2 Controller.

3.1 Seven Segment Display
3.2 VGA Controller e

3.2.1
3.2.2
3.2.3
3.24
3.2.5
3.2.6
3.2.7
3.2.8

4 Software

Development Approach,
VGA Controller Architecture
VGACounter
ZUMA_APP
Background Generation
Foreground Generation
Content Addressable Memory
Problems Encountered with VGA Controller

4.1 Software Development Approach
4.2 Game Algorithm Lo

4.2.1
4.2.2
4.2.3
4.24

Placement of Moving Sequence Balls on VGA Screen . . .
Keyboard Control
Collision Detection Conditions
Collision Handling Conditions

4.2.5 Shooter Ball Insertion 25

4.3 Software Modules and Features 28
4.3.1 Main Controller 29
4.3.2 Generation of Sequence Colored Balls 29
4.3.3 Generation of Shooter Ball 29
4.3.4 Pseudorandom Number Generator 30
4.3.5 Motion of Moving Balls on VGA screen 30
4.3.6 Keyboard Control of Shooter Ball 30
4.3.7 Collision Detection Module 32
4.3.8 Collision Handling Module 33
4.3.9 Ball Insertion Module 34
4.3.10 VGA Controller Update 34
4.3.11 7-Segment Display Score Update 35
4.3.12 Power-Up Initialization 35

4.4 Memory Utilization o0 36

4.5 Problems and Issues 36
4.5.1 Code and Data Memory 37
4.5.2 Avoiding libc Library Function Calls 37
4.5.3 Software Debugging L. 37

Integration & Testing 38

5.1 Software Porting L 38

5.2 Hardware Interfacing L. 38

5.3 Testing L 39

Conclusion 40

6.1 Lessons Learnt, 40

Chapter 1

Introduction

Ang Lay Hong, Chaiwat Sittisombut, Lim Wee Guan

1.1 ZUMA

The objective of the game developed is to eliminate all the colored balls rolling
on the VGA screen along a specific path, before the sequence of colored balls
reach the exit. To prevent the colored balls from reaching the exit, the player can
eliminate the balls by firing a colored shooter ball from the stand at the bottom
of the screen. When three or more balls of the same color come in contact during
the firing, the balls explode and points are awarded. The collision will result
in collapsing of the neighbouring balls, that may trigger more chain reactions.
If three or more balls of the same color come in contact due to the collapsing,
they are destroyed and more points are awarded.

If there are no two or more balls of the same color being hit by the shooter
ball, the shooter ball is inserted into the sequence of balls. The shooter ball is
allowed to move horizontally across screen to aim at the sequence of balls.

There are 4 levels of difficulty implemented for the game. The number of
different colors for the sequence balls increases as level of difficulty increases.
A game level is completed when all the balls on the screen are destroyed. The
game is over when the first ball in the sequence hits the exit. A screenshot of
the game described is shown in Figure 1.1.

1.2 Obtaining and Building the Project

The source and project files can be obtained from the EDA385 Course website
at http://www.cs.1lth.se/EDA385/HT08/.

The project archive contains a Xilinx EDK project for the Nexys2 Develop-
ment Board. The full hardware requirements for running this project is given
in Section 1.3. The project file requires Xilinx Platform Studio version 10.1 or
later to build.

Figure 1.1: Screen shot of the simplified Zuma game on Nexsys-2 board

1.3 Hardware Requirements

This project was developed and tested using Digilent Inc. Nexys2 Board with
a SPARTAN3E-1200 FPGA. It will probably run on any other development
board with a comparable or larger FPGA in addition to the following hardware
peripherals.

e VGA Port with support for at least 8-bit colour
e PS/2 port capable of sourcing 5V
e 4 digit 7-segment display

Additional hardware requirements include a PS/2 keyboard to control the
game, and a VGA monitor capable of supporting 640 x 480 display resolution
to act as a display.

1.4 Organization of the Report

This report documents the design of the ZUMA Arcade game running on a
Xilinx FPGA development board.

Chapter 2 describes the overall architecture of the project, and describes the
hardware and software architecture. The hardware architecture briefly describes
the hardware components in the project and the software architecture describes
briefly the software that is used for configuring the hardware peripherals.

Chapter 3 describes in detail the development of the custom hardware blocks,
namely the Seven Segment Display and the VGA Controller.

Chapter 4 describes in detail the development of the game software and
algorithms that are running on the Microblaze platform.

Chapter 5 describes the tasks undertaken to perform integration of the hard-
ware and software, as well as the testing that was done to ensure correctness of
operation.

Chapter 6 concludes the report and talks about the lessons learnt and inter-
esting insights obtained from the work done on the project.

1.5 Contributions

The following section documents the contributions of each individual team mem-
ber to the project.

| Task | Contributor |
Architecture Design
Hardware Architecture Lim, Wee Guan
Software Architecture Ang, Lay Hong
Hardware Development
VGA Controller | Lim, Wee Guan
Software Control Modules
Main Controller Ang, Lay Hong
Hardware Interfacing Chaiwat Sittisombut

Game Algorithm Modules
Moving & Shooter balls management | Ang, Lay Hong
Collision Detection & Handling Chaiwat Sittisombut
Integration & Testing Lim, Wee Guan
Ang, Lay Hong
Chaiwat Sittisombut

Chapter 2

Architecture

Ang Lay Hong, Lim Wee Guan

This chapter describes the overall architecture of the Project. Section 2.1
describes the hardware architecture and all the hardware peripherals that are
connected to the Microblaze and Section 2.2 describes the software aspects of
controlling the various peripherals.

2.1 Hardware Architecture

Lim Wee Guan

The hardware architecture selected is based on the PLB Bus provided by
Xilinx. In this architecture, the Microblaze processor sits on the PLB bus, and is
the only Master on the Bus. The remaining blocks, namely the VGA Controller,
UART, PS/2 Controller, Seven Segment Controller and Interrupt Controller are
attached as slaves on the PLB Bus. The block diagram of the various blocks
connected to the PLB is shown in Figure 2.1

The various blocks in Figure 2.1 are described briefly in Sections 2.1.1
to 2.1.5.

2.1.1 PS/2 Controller

The PS/2 core interacts with the PS/2 keyboard, reads in the scan codes sent
by the keyboard and interrupts the Microblaze when data is received. The data
received by the PS/2 Controller is written into a memory mapped data register.
This IP core is provided by Xilinx and is used unmodified in this project.

The main problem faced in getting the keyboard to be recognized by the
Nexys2 board although it was shown earlier via the Digilent BIST code that
the mouse was working correctly. It was found later that the keyboards used
expected 5V input and the jumper on the Nexys2 board was set incorrectly
to send out 3.3 V. After changing the jumper settings, the keyboard worked
correctly.

Nexys2

Seven Segment Display ‘

1
SPARTAN-3E
. Interrupt .
Microblaze Timer
Controller

\ PLB |

l |]

PS/2

VGA PS/2 RS-232

Legend:
[] Xilinx IP Core Block [Custom VHDL Block

Figure 2.1: Block Diagram of Hardware Components on PLB Bus

2.1.2 Seven Segment Controller

The seven segment display interfaces between the Microblaze and the seven
segment display. The eight segments of each number (7-segments per digit and
decimal point) have cathodes that are common across all four numbers and a
single anode for each of the numbers to reduce the number of FPGA pins used
on the FPGA. Therefore, it is necessary to perform a scanning pattern to light
up each of the numbers alternately at a sufficiently high rate so that persistence
of vision will make it appear to the viewer as if all four numbers are lighted up
at the same time.

The Microblaze writes the four digits to be displayed on the seven segment
display by writing a 32-bit word to a memory mapped address. Each of the
8-bits in this 32-bit word will represent a single digit to be displayed.

The design of the Seven Segment Controller is covered in detail in Section 3.1.

2.1.3 VGA Controller

The Nexys2 board supports 8-bit color output via a DB-15 connector. Fight
pins of the FPGA are connected to voltage divider circuits that together with
the 75 termination resistance of the VGA monitor allows for display of up
to 256 different colours. Two other signals, namely the HSYNC and VSYNC are
also sent by the FPGA to provide the sync pulses that are necessary to set the
frequency of current in the deflection coils.

A VGA Controller is needed to produce the synchronizing signals as well as
the VGA data to be displayed. The VGA Controller will also need to interface
with the PLB Bus to allow the Microblaze to control the images that are being

displayed. Data from the Microblaze is passed to the VGA Controller using 50
memory mapped registers, each representing the coordinate of a single object
that is to be displayed on screen. The VGA Controller will then paint the
respective objects onto the screen.

The design of the VGA Controller is covered in detail in Section 3.2.

2.1.4 Timer

The Timer is an IP core provided by Xilinx as part of the EDK suite. It provides
up to two timer counters and will trigger an interrupt when it has reached the
desired count. Configuration of the Timer is done via memory mapped control
registers.

2.1.5 UART and Interrupt Controller

The UART and Interrupt Controller modules are IP cores provided by Xilinx
as part of the EDK suite. The UART is used to provide an RS-232 interface to
the Microblaze which is then used as a debug console during development.

The Interrupt Controller receives interrupts from the Timer and PS/2 cores,
and consolidates them into a single interrupt line to the Microblaze. The Mi-
croblaze then reads the memory mapped registers for the Interrupt Controller
to check for the source of the interrupt before running the requisite interrupt
service routine.

2.1.6 Deviations from Proposed Design

The proposal outlined a custom PS/2 controller that triggered interrupts only
when keys related to the game are depressed. The rationale for this was to
minimize the interrupt load on the Microblaze in event of random key-presses.
This was not implemented because of time constraints as it would have been
necessary to design, implement, test and more importantly, integrate the new
PS/2 controller into the system. Moreover, it was felt that it would have been
more productive to optimize the software to handle the load rather than to
modify the hardware.

The seven segment display was originally envisioned to be driven using the
generic GPIO core provided by Xilinx. This approach was not taken as it was
felt that the Microblaze is not suitable for performing the regular refresh that
the seven segment display requires. On the other hand, this task is trivial for
hardware that is driven by a clock signal. Therefore, it was decided that a
custom IP core will need to be developed to drive the seven segment display.

2.2 Software Architecture

Ang Lay Hong

The following section describes the software architecture for the Zuma game
platform. An overview of the software framework is illustrated in Figure 2.2

The software framework is based on Microblaze, together with several IP
cores such as the PS/2 controller, a timer, the interrupt controller and block

ram. PS/2 controller is used to receive keyboard events from a PS/2 keyboard
for controlling of movement of shooter ball. The timer is made up of two timer
counters which are used for controlling motions of moving objects. The interrupt
controller is required for receiving interrupt-driven timer and PS/2 events. This
is more efficient as compared to polling-based timer counter and PS/2 events,
which will waste unnecessary CPU cycles and limit the amount of computations
that can be performed. Block ram is required to store the code and data of
microblaze. As the size of block ram in SPARTAN3E-1200 family is 504 kb (i.e.
63 kB), the maximum usable size of block ram in Microblaze is limited to 32kB.

The software framework accesses the VGA controller core and 7-segment
display core via memory-mapped addressing.

2.2.1 Timer Counter

As objects on VGA screen need to be updated once every defined amount of
time, a timer counter may be used as described as follows.

The timer counter is configured to countdown from a specific reset count
number. For instance, given a defined reset value of 5000, the timer counter is
configured to start decrementing from 5000 until the value 0 is hit. The reset
value as be seen as the period of the timer counter. The timer counter interrupt
signal is bound to the interrupt controller such that once the timer counter
value hits 0, the timer interrupt signal is received by the interrupt controller.
The interrupt controller sends the timer interrupt signal to Microblaze and the
interrupt service routine (ISR) is called to set a flag. The main routine upon
detection of the flag, will perform the necessary update, while the timer counter
wraps around and continue to count down from counter value 5000. Since the
processor is running at a clock rate of 50 MHz, a desirable delay of say 100 ms
requires a counter reset value of 5,000,000. Figure 2.3 illustrates the concept
described.

PS/2 Controller Interrupt Controller

Microblaze

Timer 0

' Timer Counter 0 '
' Timer Counter 1 '

Figure 2.2: Block diagram of Software Framework

counter := 5,000

counter := 4,999

counter := 4,998
1

counter :=1

Reset
timer
counter
value

interrupt
signal triggered!

Y

counter := 0

Figure 2.3: Concept of interrupt-driven timer counter event

2.2.2 PS/2 Controller

XPS has a PS/2 Controller core that is used in this project. The PS/2 con-
troller detects keyboard events and stores scan codes received in registers. Mi-
croblaze can receive PS/2 events either by blocking/non-blocking polling mode
or interrupt-based mode.

The PS/2 controller may be configured to be triggered via an interrupt signal
PS2INT, that is bind to the interrupt controller. PS/2 data bytes are received
via the PS/2 clock pinout PS2_CLK and data pinout PS2_DATA IO.

To receive PS/2 events in interrupt mode, a non-blocking receiving function
such as PS2 ReceiveByte() is first called. This enables the PS/2 interrupt
signal. When requested number of bytes are received, the PS/2 interrupt signal
is sent to the interrupt controller, which in turn interrupts Microblaze. The
PS/2 ISR is then called to perform the necessary handling for the received
keyboard events.

10

Chapter 3

Hardware

Lim Wee Guan

This chapter describes custom VHDL blocks that were developed for the
project. Section 3.1 describes the Seven-Segment Display controller, and Sec-
tion 3.2 describes the VGA Controller.

The total FPGA utilization for the project is tabulated in Table 3.1. As
observed, utilization of the FPGA is rather high with 95 % of the slices occupied.
Observing that 9.37 % of the used 4-Input LUTSs are for pass-through indicates
that there is some part of the circuit that has many wires congregating at the
same circuit, and the FPGA is using some of the 4-LUT as wires to supplement
the insufficient wiring resources. The circuit utilizing the large amount of wiring
resources is in the VGA Controller and although steps have been taken to reduce
the problem, it has not been totally resolved.

Table 3.2 summarizes the resource utilization for each of the two custom
VHDL blocks created for this project. The VGA Controller takes up a large
proportion of the FPGA and is a prime target for further fine-tuning and opti-
mization in the future. Details of some of the optimizations in the VGA Con-
troller that was undertaken as part of the project is detailed in Section 3.2.8.

Table 3.1: FPGA Utilization

Resource Utilization % Utilization
Slice Registers 6,083 of 17,344 35%
Occupied Slices 8,251 of 8,672 95 %
4-Input LUT Utilization 14,619 of 17,344 84 %
4-Input LUT as logic 12,851 of 14,619 87.9%
4-Input LUT as route-thru | 1,370 of 14,619 9.37%
Bonded I0Bs 55 of 250 22 %
RAMB16s 16 of 28 57%
BUFGMUXs 2 of 24 8%
DCMs 1of 8 12%
MULT18X18SIOs 3 of 28 10%

11

Table 3.2: FPGA Resource Utilization of the Custom VHDL Blocks

Custom Core Slices | Slice Reg | LUT
VGA Controller | 7,347 3,563 10,068
7-Seg Display 68 51 39

3.1 Seven Segment Display

The Seven Segment Display IP core is an independent development. It is inte-
grated into the project for displaying of scores for the Zuma game. See attached
file from the developer.

3.2 VGA Controller

Lim Wee Guan

The VGA Controller serves an the interface with the Microblaze and is
responsible for the generation of the necessary synchronization and data signals
to be sent to the VGA monitor.

Section 3.2.1 details the development approach taken to design and test the
VGA Controller as a standalone module.

3.2.1 Development Approach

The VGA Controller is a relatively large hardware module written in VHDL. As
such, it is broken down into components and tested in a piece-wise fashion with
small component-wise test-benches before being put together in a hierarchical
fashion. The test-benches are simulated using ModelSim Xilinx Edition (XE)
and checked for correct operation.

Once the entire VGA controller has been assembled and tested to operate
correctly in a ModelSim simulation, the VGA controller was incorporated into
a wrapper module that has a corresponding User Constraints File (.ucf) file.
The entire wrapped design was then synthesized using ISE into a standalone
.bit file that was loaded onto the Nexys2 board. This is to ensure that the
VGA Controller is able to operate in a standalone manner. The testing of
the VGA Controller as a standalone .bit file is important to be performed
prior to integration with Microblaze as it will narrow down problems seen after
integration to the PLB interface since the VGA Controller has been shown to
be able to operate correctly previously.

Interfacing of the VGA Controller module is performed by simply replacing
the standalone wrapper with the EDK generated user_logic.vhd file, with
the VGA Controller’s top-level module instantiated within. The details of the
hardware integration of the custom written cores to the PLB/Microblaze is
covered in Section 5.2

12

ZUMA_VGA

okl clk Hsync | HSYNC
vsyne - VSYNG
; VGACTRL VG;
resetn reset_n VGA 8 >
HCNT VCNT BLANK DISP_DATA
iﬂ im l %2
HCNT VCNT BLANK DISP_DATA
ok cik
reset_n
WR n | reseLn ZUMA_APP
> WR_n
DATAZZ, pATA

Figure 3.1: Top Level Block Diagram of VGA Controller

3.2.2 VGA Controller Architecture

At the top-most level of the hardware hierarchy, the VGA Controller consists
of two main blocks, namely the VGACounter and the ZUMA_APP. The separation
of the VGA Controller into VGACounter and ZUMA_APP modules is so that it
is possible to reuse the VGACounter in other applications since it is a generic
640 x 480 VGA Counter. A block diagram showing the top-level of the VGA
Controller is given in Figure 3.1.

The VGACounter block performs the counter tasks as well as the data trans-
mission tasks. The counter tasks cover the generation of HCOUNT, VCOUNT, blank
position signals, and the HSYNC and VSYNC synchronization signals. HCOUNT and
VCOUNT track the horizontal and vertical positions of the electron gun, and
blank indicates whether the electron gun is in the active display area or not.
The HSYNC and VSYNC signals are used to synchronize the VGA Monitor. Fi-
nally, the VGACounter receives the data to be transmitted from the ZUMA_APP
module and transmits the data in time with the HSYNC and VSYNC signals. The
details of the VGACounter are presented in Section 3.2.3

The ZUMA_APP is the application specific part of the VGA Controller that is
specific to the ZUMA application. It is responsible for the generation of the data
to be transmitted based on color and coordinate information that is sent by the
Microblaze. It should be noted that although the colour depth of the Nexys2
board is only 8 bits, data is transferred in blocks of 32 bits, which corresponds
to 4 pixels. This is because all image data is processed in blocks of 4 pixels. The
rationale for using 4 pixels/block is described in detail in Section 3.2.4.

3.2.3 VGACounter

The VGACounter consists of 2 modules, namely VGACount and VGA_Output_IF.
The former is responsible for producing the VGA Control signals and the latter

13

is responsible for taking in the 32-bit wide (a block of 4-pixels) data and trans-
mitting them out one pixel (byte) at a time. These two modules are described
in the paragraphs that follow.

VGACount does the mundane task of taking the input 50 MHz clock and using
it to generate the HSYNC, VSYNC for synchronizing the monitor, as well as HCOUNT,
VCOUNT and blank signals that are used to track position of the pixels being
displayed. The key feature of VGACount is that HCOUNT/2 corresponds to the
z-coordinate of the current pixel and VCOUNT corresponds to the y-coordinate of
the current pixel which makes it easy for any application using these signals to
compute the current pixel location. The reason for the division of 2 in HCOUNT is
that for a 50 MHz clock, the display time is equivalent to 1280 clocks and there
are only 640 horizontal pixels which corresponds to a division by 2 in HCOUNT
to obtain z-coordinate.

The VGA_Output_IF consists of a shift register that shifts out 8-bits (one pixel
worth of data) every 2 clock cycles (one pixel duration). At periodic intervals
of 8 clock cycles, a new block of 32-bit data is fed into the shift register to be
shifted out. It is worthwhile to note that this shift register introduces a one-
block delay between the data being produced by ZUMA_APP and the time when
it is transmitted, which has to be compensated for in ZUMA_APP.

3.2.4 ZUMA_APP

The ZUMA_APP is the module responsible for generating the data to be displayed
on the monitor and a block diagram of this module is shown in Figure 3.2. It
consists of two main components, namely BKGND_GEN and FGND_GEN and a third
simpler module that overlays (combines) the foreground pixel data with the
background data. The BKGND_GEN and FGND_GEN modules generate the back-
ground and foreground pixel data respectively. As all the data is generated in
blocks of 4 pixels, all three modules are triggered to run once every 8 clock
cycles. The BKGND_GEN and FGND_GEN are described in detail in Sections 3.2.5
and 3.2.6.

The overlay module works by simply over-writing the background pixel data
whenever there is valid foreground information. The validity of the foreground
information is carried in a pixmap produced by the FGND_GEN module that con-
sists of a std_logic_vector of length 4 bits, with each bit position correspond-
ing to a pixel in the data block. A 1-bit in the pixmap indicates that there is
valid foreground data in that position and thus the background pixel will be
over-written by foreground data for that position.

3.2.5 Background Generation

The main function of BKGND_GEN is to generate the display data to be sent out
to the monitor as a function of the (x,y) coordinates. As this module operates
only once every block of 4 pixels, it generates a 32-bit block of data which
corresponds to 4 pixels of 8-bit color data.

The x-coordinate is derived from HCNT by simply dropping off the least sig-
nificant bit, which corresponds to HCNT/2. With the 50 MHz clock, the display
area corresponds to 1280 clock cycles, but there are only 640 display pixels in
the x-direction. Hence, a single pixel corresponds to two clock cycles. The
y-coordinate is simply the value of VCNT, or alternatively VCNT with the most

14

ZUMA_APP

k>l clk
reset_n
= reset_n K
HONT 11 1L NT ek, clk
VCNT 10 reset n, | reset_n

VCNT BKGND_GEN

BLANK
BLANK 32
BG_DATA —* > BG_DATA
—>BG_SEL G G-

—>|blk_start

—>|blk_start

OVERLAY

ok, clk
Hi::‘,r%} reset_n
70| HONT FG_DATA_ 3
V?I/:NT r 10, VCNT _ FG_DATA
WRN __,IWR n 32
bATA 32 |pATA FGND_GEN DISP_DATA

ADDR__6 ,|ADDR
BLANK | o ANk FG_PIXMAP—% | FG_PIXMAP

—»|blk_start

Figure 3.2: Block Diagram for the ZUMA_APP Module

significant bit dropped. Deriving the block address within a horizontal row (ad-
dress of a block of 4-pixels) is simply dropping of the three least significant bits
from HCNT.

Since all blocks in the ZUMA_APP module are triggered to generate one block
of display data at the start of each block (blk_start), it should be noted that
the background data being generated is for the address that is 2 blocks into the
future. The reason the delays is because there is a one block delay in the OVERLAY
module within ZUMA_APP, and yet another block delay in the shift register within
VGACounter that performs the shifting of display data out 8-bits at a time to the
VGA display. By generating background data 2 blocks in advance, the display
data will be sent out to the monitor at the correct time (in time with HSYNC
and VSYNC) after being delayed through the abovementioned delays.

The objects on-screen that are generated by BKGND_GEN include the “graph-
paper” like lines in the background, as well as the Entrance and the Exit for
the sequence balls.

3.2.6 Foreground Generation

The function of the FGND_GEN is similar to that of BKGND_GEN except that the
output is not only a function of (x,y), but also the data from the Microblaze.
The block diagram of FGND_GEN is shown in Figure 3.5.

The CAM module is a type of Content Addressable Memory that allows for
(z,y) coordinates to be fed in, and three sets of outputs stating if one of three
active objects in ObjectDraw are active and should be triggered to generate
foreground data. The CAM is described in detail in Section 3.2.7. The DATA,
ADDR and WR_n allow for data from the Microblaze to be written into CAM.

The regPosition module generates the addresses (z and y-coordinates)
for the respective modules to operate on. As both CAM and ObjectDraw take
multiple clock cycles to complete their tasks, these two modules are pipelined

15

ROM (32x5)

yOb)j
YPOS—»| yPos - (yObj - mask_y/2) APDR DATA
XObj PIXMAP

if pixmap(i) = '0"
OFFSET fill byte(i) with colorobj
else byte(i) = 0x00

XP0OS_3| xPos - (xObj - mask_x/2)

DISP_DATA
colorObj — 71— 1 }—

Figure 3.3: Drawing of Object using information from Mask

to operate on separate blocks. When ObjectDraw is generating data for block
i, CAM is working on block 7 + 1. This pipelining is necessary because the total
number of clock cycles required by CAM and ObjectDraw to compute “hit” and
to generate the display data exceeds the 8 clock cycles available to process
each block. The outputs of CAM are held by a pipeline register and is fed to
ObjectDraw at the start of every block.

In a fashion similar to BKGND_GEN, ObjectDraw needs to generate foreground
data 2 blocks in advance to account for block delays within the design. To
support this, regPosition feeds addresses (xPosNext and xPosNext) that are
3 blocks in advance of current HCNT and VCNT to CAM, and addresses (xPos and
yPos) that are 2 blocks in advance of current HCNT and VCNT to ObjectDraw.

ObjectDraw

The ObjectDraw provides three draw objects that draw the Shooter stand, and
two balls. The objects are drawn on screen using a ROM that contains a mask
of the object to be drawn. All objects are drawn within a 32 x 32 square, and
the ROM is 32 x 5 in size. Each bit in a word in the ROM indicates if a pixel
in the particular column should be painted or not. Every address in the ROM
corresponds to a row in the square. With this mask, the draw objects can
draw arbitrary shapes and fill them with the colour specified in the input data.
This concept including the method of calculating address row and the offset is
illustrated in Figure 3.3.

The reason why two ball draw objects are needed is because the ZUMA_APP
operates on a block of 4-pixels at a time. In event that the block being processed
falls within two ball masks, e.g. two pixels in the mask of the previous ball
object, and the other two pixels in the next ball mask, two ball draw objects
will be needed per block. In this “handover” case, two objects will be flagged as
active by the CAM, and the two ball circuits will be needed to fill up the contents
of the entire 4-bit block. This is illustrated in Figure 3.4

3.2.7 Content Addressable Memory

The reason why a Content Addressable Memory like storage system is needed
in the FGND_GEN is because the coordinates of the ball cannot be sorted within
the FPGA, nor is it feasible for it to be sorted by the Microblaze. Any sorting

16

ball boundary

1
balll 1 ball2

foreground
to be displayed
PIXMAP

1
’1” 0 0 0

\—‘ DISP_DATA FGND_PIXMAP

PIXMAP

J
0jo0l0 1{ 0]0[0]1]

ball obj 1 (pixmask)

FGND_DATA

ball obj 2 (pixmask) DISP_DATA

Figure 3.4: Use of Two DrawObject to process a single block

FGND_GEN
CAM
C|k4> clk
N
reset_n reset n o
=
—\—>resetin
WR_n WR_n WR_n
DATA
DATA 32 2 DATA
ADDR 6 . |ADDR 8 ADDR > > >
19, 1xPos 2 g 2 g 2 g
Z 8 8 s 2
¢ yPos o2 SR & &
32 32 32
» regPosition ObjectDraw l i/ l i l i
HCNT HONT [onr gz 88 £8
o ° = = S o
VCNT 10 |veNT XPos Next 2 e NN
VCNT yPos_Next 3 IS 8§ & g8 8
oy olk - 5 "
5 &
reset_n
—>{reset_n
blk_start bl start | p grart
FG_DATA| 32
10 FGND_DATA
ok K xPos ——>|xPos
= ¢l 9
st yPos yPos FG_PIXMAP] 4
g reset_n FGND_PIXMAP]
BLANK
BLANK

Figure 3.5: Block Diagram for the FGND_GEN Module

17

pos_cell_0
" Ce\LWRJv(u;] wn
| —— C_DATA
x
esot n “DATA_Z | DATA_LOAD ounple ncivet
J—ob xPos combiner
9, | pos DATA [.
IxPos 1Q 2 Combiner_valid ——+ Data1
yPos 9 ok, ek 32
1eseLN | roset n " Combiner_data’?%3 | Active2
% IPoscell_data
41— |Poscell_valid
AddrDecode . - Data2
= pos_cell_45 . %
n i d Ik
WR_n_in Kyl
oo 6 =" WR_n_out [LCELWRE) | (g e | o Actived
2 —>reset_n
ADDR paTA OUTIS2AT 22 5 DATA LOAD rounp L =
DATA 32 | [DATA_IN 19 | Pos 32 Data3
DATA | %
> |yPos
ELISN P ”
reseln | eset n LSNP
resebi, | reset_n

Figure 3.6: Block Diagram for the CAM Module

algorithm used must also take into account the scanning of the electron beam,
which makes an already non-trivial sort more difficult.

The workaround is to implement memory cells (pos_cell) that can be writ-
ten to in a fashion similar to SRAM using the WR_n, ADDR and DATA signal lines.
The search is performed using the (z,y) coordinate signals xPos and yPos. Each
pos_cell holds the data pertaining to one foreground object (1 x 32-bit regis-
ter). An address decoder module is thus needed to decode the address and to
trigger the appropriate WR_n line to ensure that data is written into the correct
memory cell depending on the address sent by the Microblaze.

Upon receiving a xPos and yPos, the pos_cell computes if the current
position coincides the object that it currently holds data for. The computation
is similar to that performed in ObjectDraw and was described in Section 3.2.6.
If a “hit” is found, the data stored within pos_cell is put out on the DATA port,
and VALID is set to ‘1.

The combiner module combines all the VALID and DATA into three DATA
and ACTIVE signals. ACTIVE1 and DATA1 are special as it is directly wired to
pos_cellO that contains the data for drawing of the shooter stand. This ensures
that the shooter object’s data is always passed to the shooter stand draw object,
and that it has priority over the ball draw data. The first two VALID and DATA
with VALID = ‘1’ for ball draw objects are passed out on DATA2, DATA3, ACTIVE1
and ACTIVE2 to be fed into the ObjectDraw module to draw the ball objects. A
detailed description of the optimizations made on the combiner is described in
greater detail in Section 3.2.8.

3.2.8 Problems Encountered with VGA Controller

As outlined at the beginning of the chapter, the VGA controller is the single
largest hardware block in the design. The original design for the VGA controller
did not have a CAM, but instead had an array of ball draw objects (one per object)
that was responsible for drawing a single object on screen. However, as each of
the ball draw objects takes up rather sizeable resources of the FPGA, the design
was not scalable above 20 foreground objects due to lack of FPGA resources.
Moreover, the outputs from the ball draw objects consists of 32-bit data and

18

4-bit pixmap fields, and to combine all these inputs into a single output needs
huge numbers of wires congregating in a single point, which used up yet more
4-LUT as routing resources, which in turn used up yet more resources.

A redesign of the VGA Controller led to the current “Time-Multiplexed”
design, where two ball draw objects and a single shooter-stand draw object
were responsible for drawing all the foreground objects on screen. Although
this reduced the resource utilization of using individual draw objects for each
foreground object, the wiring problems were merely pushed back into the CAM
where there are still large numbers of inputs (from pos_cell modules) being
combined into 3 outputs. The first version of the combiner module in the CAM
was simply a loop in a process that combined all the outputs from the various
pos_cell modules. In addition to the large numbers of wires, another problem
is the long critical path introduced by this module as the number active objects
increased. This design was only scalable up to 32 active objects on screen, and
ISE reported the VGA controller’s operating frequency as 25 MHz which was
unacceptable.

A final redesign was performed, with all efforts focused on combiner to
reduce resource utilization and to improve critical path. The module was broken
down into an array of smaller combiners, each of size 8. By combining them in
an array as shown in Figure 3.7, and pipelining them over multiple clock cycles
(one clock cycle per stage), the number of wires was reduced, and the critical
path shortened significantly with ISE reporting the final design of the VGA
Controller as capable of operating at up to 83 MHz. This design is capable of
having 46 foreground objects, which was able to meet the project’s design goal.
It should be noted that although the design of the combiner allows for up to
64 active objects, and only 46 objects are used, the unused modules (2 of the
combiner8 in Stage 1) are optimized away during synthesis, and do not occupy
any resources on the FPGA.

A further possible improvement that is possible on the VGA Controller is to
use locations in the block RAM of the FPGA to store images that can be used
for the foreground objects. This will make the images that can be displayed
controllable via software and allow for more dynamic objects rather than the
current ones that are only filled with one colour. However, the foreground image
painting algorithm in this case will also be much more complicated, which given
the current FPGA resource limitations may not be possible.

19

pipeline pipeline pipeline

combiner_out(1)

combiner8

combiner_in(0)

combiner_in(1) combiner8

combiner_in(2) combiner8

1
I
1
I
1
1
1
1
combiner_in(3) —t— |

1
combiner_in(4) R |
combiner_in(5) P B 1 —

| 1

— combiner8
combiner_in(6) —

combiner_in(7)

combiner_out(2)

combiner_out(3)

8 units of combiner8 4 units of combiner8 2 units of combiner8 1 unit of combiner8

(6 units synthesized for 46 Objects)

1
I
1
I
1
1
1
. 1
combiner8 | combiner8
combiner8 !
combiner_in(56) R ! —
comb\m oy .
ner_in(s8) | ! —
combiner_in(58) I X X
ner_in(ss) | I
combiner_in(59) : : I
combiner_in(60) P X — X
bt e 1 !
combiner_in(61) : : !
combiner_in(62) R B \ :
o e | 1
combiner_in(63) . !
- 1
1
1
Stage 3:] Stage 4:
1
1
1

1
1
1
Stage 1: | Stage 2:
1
1
1

Figure 3.7: Conceptual Block Diagram for the final combiner Module

20

Chapter 4

Software

Ang Lay Hong, Chaiwat Sittisombut

The following chapter describes about the software modules developed in
Microblaze. The software development approach is first mentioned, followed by
a brief description of the Zuma game algorithm implemented. Implementation
work performed on the various software modules are then described. Prob-
lems encountered during the midst of the project are mentioned with proposed
solutions.

4.1 Software Development Approach

Ang Lay Hong

The software development is carried out concurrently with the hardware
developement of VGA and 7-segment controllers. This implies that hardware
components are not readily available for testing of the software core during the
development time. A more efficient methodology is required to facilitate the
development of the software architecture.

The approach adopted is to develop the game algorithm on a LINUX host as
a simulator whilst hardware development is in progress. Simple on-screen print
messages are used to simulate the display of moving balls on VGA screen, with
respect to the center pixel locations of the balls.

An obvious advantage of this approach is the readily available debugging
toolchain gdb to perform more efficient debugging. The debugging of software
is much more easier with all debugging information available as needed, as
compared to developing the software directly on the target host.

Direct implementation of software on the target poses a great challenge in
the debugging task. Without JTAG support in the default USB-JTAG module,
the main method of debugging can only be done by having RS232 test print
messages. There is no full code visibility on the target, as compared to the case
for a LINUX host environment.

21

Direction of movement

(112,48) (144,48) > (496,48) (528,48)
'x--\"'.--.\‘/,--\‘/.-'\“",--\"'.--\"',--\"'.--.\"'.--\“.--\“,'.--.\‘/,--\"'.--.\‘/,--\‘
Entrance (r 44 | 43 y 42 | 41 § 40 } 39 y 38) 37 | 36 | 35 | 34 ¥y 33 y 32 jy 31 |
Y » » " » » ” » ” " ” ” - " g 560,80
N PR LA PAARN RN PR LA PR PN PAARY RS LR PR LA e ¢"~(’)
- .- - - .- .- - .- -- - .- - .- - .
Direction of movement L 3000
S

(112,112) (144,112)

A

“ . s “ . e “. s ST T T, s “ . s
{16) 17 Y 18 § 19 § 20) 21y 22) 23) 24 § 25 f 26) 27) 28) 29
(80,144) A " " " " " " ¢ (528,112)

N .- .- -
\

H 15 1 Direction of movement
.

st ST TIN TT T T T T
\. " " 0 o o t n .
7 » 6 % 5)Y 4 9 3 0 2 3y 1 3y 0

” ”» ” ”» ”» ”» ”» ” g
DT T P TP P P P B

SCTT TN TN, .’ ..

. o " 0 . o

v 14 p 13 ¢ 12 3 11 } 10 ¢ 9

. ” ” ” ” ” ”

R R At AT . ~eae
(112,176) (144,176) (560,176)

Figure 4.1: Pixel locations and index of moving balls on a VGA screen

4.2 Game Algorithm

Ang Lay Hong, Chaiwat Sittisombut

The following section describes briefly about the Zuma game algorithm im-
plemented.

4.2.1 Placement of Moving Sequence Balls on VGA Screen
Ang Lay Hong

Information of sequence balls (objects) are stored in array of data structure,
and indexed in order with the ball nearest to the exit as 0 and last ball being
nearest to the entrance. Each data structure contains information about the
pixel location of the ball on screen, given by the variables xy_index, x and y.
The on-screen size of each ball is 32 by 32 pixels.

The variable xy_index gives a label to the location of a moving ball on screen
and x and y stores the pixel location. There are 45 index locations (0 to 44),
with pre-allocated (z,y) pixel coordinates, representing the center of the ball
located at the index position. Index 0 (with coordinates (560, 176)) represents
the ball center location nearest to the exit and 44 (with coordinates (112, 48))
being the index next to the entrance, as shown in Figure 4.1.

The movement of sequence balls are simulated by moving 2 pixels once every
few ms. When that happens, the centre (x, y) is updated, depending on direction
of movement of the ball. When the balls are moved 32 pixels away from its
original center (x,y), it corresponds to the next ball locaiton. Its associated
xy-index is then updated to the next value.

It is best to illustrate the above concept with an example. Say, given 4
generated sequence balls with locations as shown in Figure 4.2a. The data
structure for these 4 objects are

ball[0] {xy_index = 14; x = 112; y = 176;}
ball[1] {xy_index = 15; x = 80; y = 144;}
ball[2] {xy_index = 16; x = 112; y = 112;}
ball[3] {xy_index = 17; x = 144; y = 112;}

If the balls are moved by 20 pixels, the new locations of the balls, shown in
Figure 4.2b, become

22

ball[0] {xy_index = 14; x = 132; y = 176;3}
ball[1] {xy_index = 15; x = 100; y = 164;}
ball[2] {xy_index = 16; x = 92; y = 132;}
ball[3] {xy_index = 17; x = 124; y = 112;}

When the balls are moved further by 12 pixels, the moving balls are updated
as shown in Figure 4.2c. Note that the value xy_index has changed.

ball[0] {xy_index = 13;
ball[1] {xy_index = 14;
ball[2] {xy_index = 15;
ball[3] {xy_index = 16;

= 144; y = 176;}
= 112; y = 176;}
= 80; y = 144;}
112; y 112;}

LI T

4.2.2 Keyboard Control
Ang Lay Hong

The player of the Zuma game controls the shooter ball via arrow keys on a
PS/2 keyboard. The LEFT and RIGHT keys control the horizonal movement of
the shooter ball/stand across the screen. Even when the shooter ball is launched
and still in trajectory towards the sequence of colored balls, the player is still
able to control movement of the shooter stand via the LEFT and RIGHT keys.
When the SPACEBAR key is hit, the shooter ball is fired towards the sequence
of colored balls. Hitting the ENTER key restarts the game when game over, or
starts the game at next level of difficulty if the player has successfully destroyed
all the balls on the screen.

4.2.3 Collision Detection Conditions

Chaiwat Sittisombut

After a shooter ball is launched, the software system constantly checks for
any collision between the shooter ball with any of the sequence balls.

To determine a collision, given n moving sequence balls on screen and the
coordinates of shooter ball being (Zsnoot, Yshoot), & collision is detected when the
following conditions are fulfilled.

(xn - 32) < Tshoot < (xn + 32);
and Yshoot S (yn + 32)
When there are more than one sequence balls detected to fulfill the above
condition, the sequence ball nearer to the shooter ball is considered as the
collided ball. If the shooter ball collides right in the middle of two sequence

balls, the collision is set to the sequence ball nearer to the exit. Figure 4.3
illustrates graphically the collision area check.

4.2.4 Collision Handling Conditions

Ang Lay Hong

23

Direction of movement
(112,48) (144,48)

(496,48) (528,48)

N N R I e N TS A N N N R R AL NI AR N NN
" % o, ' " s " ., [y ' s " s .
Y 43 ¥ 42 | 41 ¥ 40 y 39 y 38) 37) 36 { 3 P 34 ¢ 33 32 ¥ 31 1
o"§ ,"ﬁ o"\ o"ﬁ o"$,"ﬁ o"$,"~ o"\ "$,"ﬁ o"$,"a .
(112,112) (144,112) P Direction of movement
’, o a ' Pk ,“" Pk e s Pk = Pt Do = Pk e s .-
P T Y Ty sy o Y s eV Y8 2
80,240) (25 3 " K 2 K 2 N " » K 2 2 J (528,112
b 4 ATSREPL A NS S NPT FOREDL AR NPL A SR I FURPL I ML SR TPt ARSI N4
Direction of movement
e, ety et emmay LemTey Lemmay Lemmn Temmel L SmEaL emTaL LemTal Lemtal emts
K A N \", N ps i N R \", i i i i .
13 y 12 4 11 § 10 ¥ 9 4 8 } 7 3y 6 ¥ 5 % 4 3 3 p 2 p 1 } 0
. o"ﬁ o"\ o"ﬁ o"ﬁ o"~ o"$,"$ "‘\ o"$,"$,"$,"ﬁ o"ﬁ o'
(112,176) (144,176) (560,176)
(a)
Direction of movement
(112,48) (144,48) > (496,48) (528,48)
BN N T TN TN TN LTI T T TN TN T e
' o ' 0} s o 0 " .
)y 43 40 ¥ 39 Y 38 ¥ 37) 36 f 35 | 34 ¥ 33) 32 ¥ 31 1
'l“ 'l“ "\ "\‘ "l~ ',\‘ ,l‘ ',l " . N . (560,80)
PRI AN [P N AT TP RPN N AT TS ~
.
— \
(112,112) (144,112) { Direction of movement K
'x-' .--.\‘/,--\‘/.- u\"’»--\"'.--\"’,--\"'.--\"'.-n ".-'u\‘,,.--\
4t 3 17 4 18 1 19 ¥ 20 y 21y 22 f 23 | 24 { 25 | 26
(80,1 Ky ”» " ” ” ”» ” ” " ” ,
Mo Taaae? Sellet St PLARSREPL IR NURIPE 0 SPL I ORI FURS S L 4 Seele
" 2 " "
' Direction of movement
“~ Sy ,eTTN, et emmay LemTey Lemmny Lemms T =~ SmEaL emTaL LemTal Lemtal Lemts
- .. ., S DA S s .,
\ \ \ \ \ \ \, \ \ \ \
)'125'11‘.'10)'9)'8)'71'61'5)'41'31'2)'1)'01.
" " " " 0 ”» " " " " " " " .
e LA A JURL A NP S SRR PUPL A NP A PR 2 UL S SSRPL I PSR I NPT A PORIPS S SR 4

(112,176) (144,176)

(560,176)

Direction of movement

(112,48) (144,48) (496,48) (528,48)

g e .. O .. s . e O .

.
4 Y 43 Y 42 % a1 7 40 Y 39 % 38 Y 37 Y 36 f 35 f 34 % 33 % 32 % 31)
" " " " " " " " " " " " Q

. #
B T R A U A AL R U ST SRR et
(112,112) (144,112) Direction of movement
ST L T T TN TN T T T TN TN T
. g - \ - 3 g g
80,144 B 17 200y 21y 22 Y 23 Y 24 % 25 f 26 % 27 Y 28
(80,) s » ., ” » ”, ” ”» ”
N ‘~__. ~ e’ ‘~__-' ‘~__;' ‘~__-' ~~__;' ‘i__r' ‘~__-' ‘~__;' ‘~__-'
2 ‘1 Direction of movement
g
= ST LT TN T T LT
“ ' ' n .
12 % 11 } 10 ¢ 9 1 8 | r 0
. . S R JOR K
(112,176) (144,176) (560,176)

Figure 4.2: (a)Example of 4 moving balls on a VGA screen, (b)New pixel lo-

cations after moving 20 pixels, (¢)New pixel locations after moving another 12
pixels.

24

Figure 4.3: Collision check boundary condition

When collision is detected, various condition checks are made to determine
if an explosion has occurred.

Let index of the sequence ball that collided with shooter ball be n. One of
the following cases may happen.

Case 1 The shooter ball has the same color as ball n. In this case, check for
consecutive colored balls from ball n downto 0 and n to (N — 1), where N s the
number of balls in the sequence. See Figure 4.4a.

Case 2 The shooter ball has a different color from ball n. The shooter ball is
nearer to ball (n — 1) than ball (n+ 1). In this case, if the shooter ball has the
same color as ball (n — 1), check for consecutive colored balls from ball (n — 1)
downto 0. See Figure 4.4b.

Case 3 The shooter ball has a different color from ball n. The shooter ball is
nearer to ball (n + 1) than ball (n — 1). In this case, if the shooter ball has the

same color as ball (n + 1), check for consecutive colored balls from ball (n + 1)
to (N —1). See Figure 4.jc.

For each of the cases above, the chain length of identical colored balls, in-
cluding the shooter ball, is determined. If the chain length is at least 3, these
colored balls are destroyed. The remaining sequence balls are then collapsed
and checked for further collisions based on the following condition.

Let (npead + 1) and (n¢qi — 1) be ball index of first and last exploded balls
in the sequence as shown in Figure 4.5a. If balls npeqq and neqi has the same
color, then check for balls from npeqq downto 0 and nyey to (N — 1), where N
is the length of sequence balls.

If the above case form chain length of 3 or more colored balls, the second
explosion and further collapsing occurs, as shown in Figure 4.5b. The above
check continues until there are no further explosions or all balls in the sequence
are destroyed.

4.2.5 Shooter Ball Insertion

Ang Lay Hong

25

n+1 n n-1

5@205 ”6“6@”466
))

(a) Case 1: shooter ball hits the same (b) Case 2: shooter ball hits the same
colored ball n colored ball n — 1

SOw |
N
@

(c) Case 3: shooter ball hits the same
colored ball n 41

Figure 4.4: The 3 possible cases for the shooter ball to destroy the sequence
balls

26

*CCOO0®

a) Sequence of balls after first collision

o 00

(b) Sequence of balls after second collision

Figure 4.5: An illustration of the second collision

27

0

¥ ¥ —

Power-up
Initialization

Ball Generation \ / Collision Handling

Timer Counter 0 Main

Event Software Collision Detection
(Sequence Ball Movement) ControIIer

Timer Counter 1 / \
Event Shooter Ball Insertion

(Shooter Ball Movement)

PS/2 Event
(Shooter Ball Control)

Figure 4.6: Software Modules in Microblaze

When no 2 or more sequence balls carry the same color as the shooter ball,
the shooter ball is inserted into the sequence of moving balls. The shooter ball
is inserted based on the following conditions.

Case 1 If shooter ball hits directly on sequence ball n;, move sequence balls 0
to n; one index position closer to the exit. Insert shooter ball in pixel location
occupied by n;.

Case 2 If shooter ball hits 2 sequence balls n; and n;+1, move sequence balls 0
to n; one index position closer to the exit. Insert shooter ball in pixel location
occupied by n;.

Case 3 If shooter ball hits the last ball in the sequence, ny_1, move sequence
balls 0 to ny,—1 one index position closer to the exit. Insert shooter ball in pixel
location occupied by ny_1.

Case 4 If shooter ball hits the first ball in the sequence, insert shooter ball in
one index position before sequence ball 0.

4.3 Software Modules and Features

Ang Lay Hong, Chaiwat Sittisombut

The various software modules implemented in the Microblaze are shown in
Figure 4.6.

28

Initialization

Restart Game/
Next Game Level
Update (x,y)
of Shooter Ball/Stand

LEFT/RIGHT
key code
received

Check
PS/2 key codes

SPACEBAR
key code received

Launch
Shooter Ball!!

Game over
check
Update movement of
Sequence Balls
Timer Counter 0

Timeout Interrupt

ENTER
key code
received

PS/2 Interrupt.
Event!

Timer Counter 1

Timeout Interrupt
Update movement of
launched shooter Ball
Timer Counter 1
Started

Collision Detection

Check

Shooter ball
§ § insertion
Collision Handling)

Score Computation

Game Algorithm

Figure 4.7: State Flow Diagram for the Software Main Controller

4.3.1 Main Controller
Ang Lay Hong

The main controller is responsible for handling of all tasks based on events
of occurrance. A state flow diagram in Figure 4.7 illustrates issuance of tasks
based on various conditions.

4.3.2 Generation of Sequence Colored Balls
Ang Lay Hong

The sequence of colored balls is generated once every few milliseconds, using
a random number generating function as described in section 4.3.4. The genera-
tion is performed until the defined maximum number of colored balls for a level
is reached. The number of different colors is determined by the level of difficulty.
For game level 1, the generated balls carry 3 different colors. The number of
different colors then increments with level of difficulty, up to 8 different colors.

The sequence of balls is configured to move 2 pixels every 100ms. When
the last ball in the sequence (i.e. the one closest to the entrance) has (z,y)
coordinates of of (110,48), the next ball is generated but “hidden” behind the
entrance box.

4.3.3 Generation of Shooter Ball

Ang Lay Hong

29

A new colored shooter ball is generated after the shooter ball collides with
the sequence of balls and all chain reactions are completed. The color generated
for the shooter ball has to be one of the colors in the existing sequence of moving
balls.

4.3.4 Pseudorandom Number Generator
Ang Lay Hong

A random number generator (RNG) is required to randomize the colors of
the sequence of balls as well as the shooter ball. To do so, the 1ibc random
number function rand () is considered. It is however observed that the rand ()
function halts the interrupt controller. In addition, the 1ibc function takes up
a ridiculously huge code size of 8 kB. Due to the above motivation, a sepa-
rate Pseudorandom number generating (PRNG) function is required. A simple
alternative is the Rnd () function implemented in Visual Basic, which is a lin-
ear congruential generator. However, due to its lack of randomness, it is not
recommended to use the PRNG for other purposes, except for trival games.

The formula for Rnd () function is given as

1 = (a-x0+c)mod 2?* for a = 1140671485,
c = 12820163

The term x; denotes the random number generated based on the previous
generated random number xy. The default seeding value for xq is 327680

The color generated is represented by a number from 0 to NUM_OF_COLORS—1.
This is given as NEW_COLOR = xymod NUM_OF_COLORS

4.3.5 Motion of Moving Balls on VGA screen
Ang Lay Hong

Game algorithm requires constant movement of the sequence of colored balls
at a specific rate. This is handled by the timer counter 0 which is interrupted
once every defined period of time and the (z,y) coordinates of the balls are then
updated. The timer reset value is defined as 12,500,000, which corresponds
to 250ms. The sequence balls are configured to move 2 pixels every 250 ms.
Figure 4.8 demonstrates the effect of sequence ball movement being handled by
timer counter 0.

When the shooter ball is fire, it moves vertically towards the sequence of
colored balls at a specific rate. In order to simulate the movement, timer counter
1 is used. The timer counter 1 is interrupted once every 10ms to update the
location of the shooter ball by 16 pixels vertically. Figure 4.9 illustrates the
motion of the shooter ball with respect to the period of timer counter 1 when
launched.

4.3.6 Keyboard Control of Shooter Ball
Ang Lay Hong

The player may move the shooter ball horizonatally across screen to aim the
shooter ball at the sequence of balls. This is controlled via the LEFT and RIGHT

30

Timer Counter 0 up! Restart Timer Counter 0
Update (X,Y) of sequence balls

LT TN TN
. A .~ A

(112,80) K (114,\ 1116,\, (118, “, (120,
. 80)} 30)} 80) 4 80)
[| T T 1
0 250 500 750 1000
Time

Timer Period = 250ms
2 pixels/period

.

Figure 4.8: Motion of sequence of balls with respect to Timer Counter 0

time
Timer Counter 1 up!
Restart Timer Counter 1
30ms Update (X,Y) of shooter ball
Timer Counter 1 up! ﬁ
Restart Timer Counter 1 Re S
20ms Update (X,Y) of shooter ball /
e — - (112,344))
'
\ .
e
Timer Counter 1 up! ,.--I\
Restart Timer Counter 1 R KR
10ms Update (X,Y) of shooter ball ',' %
O » (112,360)
' '
y .
. .
Timer Period = 10ms .. L’
16 pixels/period AL

Figure 4.9: Shooter ball motion with respect to Timer Counter 1

31

arrow keys on the keyboard. The first scan key is received as a PS/2 interrupt
signal when the LEFT or RIGHT arrow key is pressed. The interrupt event will
trigger the software module to update the z coordinate of

e the shooter ball and shooting stand if ball is unlaunched

e the shooter stand if ball has been fired

As the player may hold down the arrow key for consecutive left or right
movement. The scan code sequence for such event will be

LEFT: EO 6B EO 6B ... EO 6B EO FO 6B
RIGHT: EO 74 EO 74 ... EO 74 EO FO 74

The key scan sequence is handled by receiving only the first 2 scan codes
via interrupt. The (z,y) of the shooter ball/stand is updated and the main
controller goes into polling mode for the next PS/2 byte. When the next 2 bytes
of EO 6B or EO 74 are received during the wait loop, the update is performed
again. Receiving the key codes in such single byte polling mode frees up the
system for more important events such as updating of movement of sequence
balls and shooter ball. In addition, it is expected that the PS/2 polling function
will not hog the system as key codes are expected to come in intervals of 100 ms
before the echo code FO is received.

The shooter ball is launched from the shooting stand via the SPACEBAR key.
When the PS/2 interrupt or polling module detects the press of SPACEBAR key,
timer counter 1 is started to update the vertical movement of the shooter ball
as described in previous section. If the shooter ball is already launched and in
trajectory towards the sequence balls when the SPACEBAR key is pressed, the
system does not respond to the key pressed.

During game play, if the ENTER key is hit, the system ignores the scan code.
Upon completion of a game level or when the gameplay is over (first colored
ball hitting the exit), the ENTER key is enabled. Hitting the ENTER key brings
the game to the next level of difficulty or re-start the game by generating a new
sequence of colored balls.

4.3.7 Collision Detection Module

Chaiwat Sittisombut

The collision detection module is executed in a timely manner after the
shooter ball has been fired from the shooter stand. The module is called peri-
odically, with its period controlled by Timer Counter 1. At every timeout, the
module performs a collision check. If collision occurs, the index n of the ball at
which the collision occurs is determined.

Given y_pos as the y-coordinate of the shooter ball. The condition y_pos< 224
is first checked. The y-coordinate range of 224 to 479 is the region below the
path of the moving balls, of which no collision is likely to occur.

If the condition y_pos< 224 is fulfilled, boundary conditions as described in
section 4.2.3 are checked.

To perform the boundary check, the horizontal and vertical distances be-
tween the shooter ball and each of the sequence balls starting from the first

32

ball are computed and checked. When the boundary conditions are met for a
sequence ball index, a collision is detected and Timer Counter 1 is stopped. The
check stops and the ball index is considered as the collided ball index n. The
collided ball index however may not be the ball closest to the shooter ball, as
the next sequence ball is unchecked yet. To do so, the distances between the
shooter ball and the next sequence ball are also computed and compared.

Let the zy-coordinates of shooter ball be (x4, ys) and the 2 checked sequence
balls be (z;,y;) and (x;+1,yi+1) respectively.

If |xg — @ip1| > |zs — a4, the shooter ball is closer to the currently checked
sequence ball index 7. If the reverse is true, the collided ball index is set as the
next ball index, i.e (i + 1).

4.3.8 Collision Handling Module

Chaiwat Sittisombut

The collision handling module performs the check on color chain collision,
given the collided ball index n determined in section 4.3.7. When 3 or more
balls with the same color collide (including the shooter ball), ball destruction
is handled. Further chain reaction checks are made to detect multiple chain
explosions.

The module may be separated into 3 cases as described in section 4.2.4. The
cases are determined based on the color check between the shooter ball and the
collided ball.

If the shooter ball and the collided ball have the same color, case 1 is consid-
ered. The length of chain color is determined. A subroutine is implemented to
compute the length of chain with the collided index n as the “seed” ball index.
The subroutine returns 3 variables chain_length, index_start and index_end.
These are the chain length and the starting and ending index of the color chain,
respectively.

If chain_length> 3, an explosion has occurred and the sequence of balls
are collapsed and updated with the collided balls removed. However, if the
chain length< 3, there is no explosion and the shooter ball is inserted into the
sequence of moving balls.

After first collision has occurred, the next collision in a new ball sequence
must be detected with the same subroutine, using the information in index_start
and index_end. Nevertheless, if there is any collision that occurs in the begin-
ning or in the end of the ball sequence, there is no need for further collision
checks. If there are more than 2 multiple collisions, a bonus score is happily
given. This repeats until all subsequent chain reactions are completed or all
sequence balls are destroyed.

The multiple collision detection and handling have the same principle as
the single collision detection and handling. However, a new variable n_chains is
introduced to count the number of collisions which has just occurred. Moreover,
the collided balls are removed and the closest ball to the shooter ball or a
previous ball index n, is set to be a new ball index m. The new ball index is
used for comparing color with the adjancent ball.

If the shooter ball and the collided ball have a different color, cases 2 and
3 are checked, where the shooter ball will be checked for color chain collision
against one of the 2 neighboring sequence balls.

33

To determine the closer of the two sequence balls to the shooter ball, the
distances are computed as follows.

Let the x-coordinate of shooter ball be x5 and that of the 2 neighboring
sequence balls be x,_1 and x,, 41 respectively.

If |xs — xpy1]| > |xs — zp—1], the shooter ball is closer to the sequence ball
(n—1). Chain collision is thus checked from ball index (n — 1) onwards downto
first ball in the sequence. If the condition fails, the shooter ball is found to be
closer to the sequence ball (n 4 1). Instead, chain collision is checked from ball
index (n+1) until end of ball sequence. Just as in case 1, further chain collision
are checked if a chain collision is detected.

If all the above 3 cases are invalid, i.e. the shooter ball has a different color
from ball n, n — 1 or n 4 1, the shooter ball is inserted into the ball sequence.

To simulate the effect of collision on screen, the VGA display screen will be
updated immediately when an explosion occurs. Timer Counter 1 is then used
to wait for approximately 0.5 sec before the next check is performed. This pause
is to simulate effect of ball destruction on the VGA screen.

4.3.9 Ball Insertion Module
Ang Lay Hong

The ball insertion module is called when there is no destruction of colored
balls and the shooter ball is to be inserted into the existing sequence of moving
balls, taking over the pixel location of ball n.

Let N be the number of current moving balls on screen. The balls from
(n 4+ 1) to the last ball (N — 1), i.e. nearest to the entrance, will retain their
current local pixel location. Their ball indexes will however be increment since
the number of balls will be incremented to (N + 1) after the shooter is inserted.
Thus, these balls will be represented with ball indexes (n + 2) to N.

The next step is to move balls n to 1 one position closer to the exit. This is
equivalent to taking over the information of xy_index, x and y from the ball in
front. For instance, ball (n — 1) will be updated with the pixel location of ball
(n —2), (n—2) with (n — 3) and so on, until ball 1 being updated with pixel
location of ball 0. As for ball 0, extra care is taken to determine its position
based on its current location. Its new pixel location is computed based on the
current offset of (x,y) from the pre-allocated (x,y) for xy_index.

After balls 0 to n are moved ahead, the shooter ball is inserted as ball (n+1)
by taking over the xy_index, x and y of ball n.

4.3.10 VGA Controller Update

Chaiwat Sittisombut

The VGA controller core described in section 3.2 paints the screen based on
the center pixel locations and color information received from Microblaze. To
facilitate transfer of such data, fifty 32-bit registers are used. Microblaze writes
to these slave registers via memory-mapped addressing method.

The format of each of the 32-bit register is given as follows.

34

Bits 31 30:27 26:19 18:10 9:0

Length 1 bit 4 bits 8 bits 9 bits | 10 bits
Data Valid bit | Reserved | RBG color | center center
Y pixel | X pixel

Upon any changes to the locations of the moving and shooter balls on screen,
as well as the colors, these registers will be updated with the latest data.

4.3.11 7-Segment Display Score Update

Chaiwat Sittisombut

The 7-segment display core described in section 3.1 displays the current score
for the game. The score is displayed in four display segments, Dy through Dj,
for the 1,000th, 100th, 10th and ones places respectively.

Scores are written into one 32-bit register in the 7-segment display, via
memory-mapped address accessing mode.

The format of the 32-bit register is

Segment Ds D, D, Dy
Bits 31:24 | 23:16 | 15:8 | 7:0
Place 1000tk | 100th | 10th | ones

The 7-segment display core is only capable of displaying digits 0 to 9. There-
fore, the score is converted from hexadecimal to decimal numbers for each digit,
before writing to the 32-bit register. The conversion can be illustrated by the
following example.

Given score= 1826, then

Ds= |85 mod10 =1

1000
Dy= [mod10 =38
Dy= [mod10 =2

Dy= 1826 mod 10 =6

4.3.12 Power-Up Initialization
Ang Lay Hong

Upon starting of the game, the software performs a series of events at ini-
tialization, as illustrated in Figure 4.10.

The pseudorandom number generator (PRNG) described in section 4.3.4 is
initialized with a default seed value of 327680.

A new sequence of colors are generated using the PRNG initialized. The
starting (x, y) coordinates of the colored balls are assigned based on pre-adefined
locations specified in a constant array.

A color is generated for the new shooter ball and the initial locaiton for the
shooter ball is set to be the lower centre of the scren, i.e. (z,y) = (320,430).

The timer counter 0 device, which handle the movement of the sequence ball,
is configured with a pre-defined period. The defined period is 250 ms, based on

35

Initialize PRNG
Generate Sequence
of Colored Balls
Generate Shooter
Ball

Configure Timer
Counter 0
Enable Interrupt

Wait for
Interrupt Events
Start Timer Counter 0
Update VGA Controller
Update 7-Segment

Configure PS/2 Controller
Enable PS/2 Interrupt
Configure
Timer Counter 1

Figure 4.10: Sequence of events during power-up initialization

a 50 MHz clock. This gives a counter reset value of 12,500,000. The timer
counter 0 is also configured to be interrupt driven, via the interrupt controller.

The timer counter 1 device, which will be used when the shooter ball is fired
during the game, is configured with a reset value of 500, 000, signifying a period
of 10 ms.

The PS/2 controller that tracks the player control of the shooter ball is
configured to be interrupt driven, via the interrupt controller. The interrupt
is enabled to start detecting any key press interrupt activity from the PS/2
keyboard.

With the new sequence of colored balls and shooter ball ready, the VGA con-
troller registers are updated with the details of the colored balls. The scoreboard
is reset to zero and the 7-segment display is updated with the reset score.

Finally, timer counter 0 is started to start handling the movement of sequence
colored balls and the software goes into a wait state, as described in section 4.3.1.

4.4 Memory Utilization

Ang Lay Hong

The memory utilization for code and data in the Microblaze is 22kB of
BRAM.

4.5 Problems and Issues

Ang Lay Hong, Chaiwat Sittisombut

36

The following sections describes the various problems and issues encountered
during the design and implementation of the software architecture in Microblaze.
Workarounds and solutions to these problems and issues are also presented.

4.5.1 Code and Data Memory

The SPARTAN3E-1200 FPGA chip on the Nexsys2 kit comes with an internal
block RAM (BRAM) memory of 507kb (i.e. 63kB). However, only up to 32kB
is usable for code and data in Microblaze. In order to eliminate the issue of
limited code size, there were plans to reside the code and data in the external
SRAM memory instead. However, it is observed that if SDRAM is used for data
and code memory, Xilinx debugging tools are required to load the data and code
into SDRAM, which is not supported by the on-board USB-JTAG connection.
Thus, code and data are instead residing on BRAM.

4.5.2 Avoiding libc Library Function Calls

It is crucial to avoid using libc library function calls in the software module.
such as printf and rand. The code size increases dramatically due to the need
to include the libc library.

As described in section 4.3.4, using rand as a PRNG affects other features
such as the interrupt controller.

4.5.3 Software Debugging

Ang Lay Hong, Chaiwat Sittisombut

Software debugging on a Microblaze environment without the help of a Xilinx
JTAG tool is a challenging task, as there is no code visibility for tasks running
on the Microblaze. One solution to this problem is to first perform all possible
testing, debugging and simulations of the game algorithm in the LINUX host
environment. The software is then ported to Microblaze platform for further
verification on the Nexys2 target board. Bugs discovered on the target platform
can be easily resolved by simulating them on the LINUX platform. Extra care
has to be taken during the porting as several function calls such as printf ()
and rand () are not usable, as described in sections above.

37

Chapter 5

Integration & Testing

Ang Lay Hong, Chaiwat Sittisombut, Lim Wee Guan

This chapter describes the porting of the host version of the software, and
the integration of the hardware components to the board.

5.1 Software Porting

Ang Lay Hong

For a more efficient software development process, the game algorithm is first
implemented and tested on the LINUX host platform. With the gdb debugging
environment, software issues are more easily resolved.

The target software framework, consisting of necessary target-dependent
modules such as the 2 interrupt-driven Timer Counters and PS/2 controller,
are developed on Microblaze target.

Having done all necessary simulation and testing on the LINUX platform, the
game module is then ported to the Microblaze target platform and incorporated
into the target software framework. Before porting, the target software frame-
work is first tested thoroughly. This is to ensure that issues can be more easily
resolved during the integration. It eliminates unnecessary guesswork required in
determining if the game algorithm module or the framework creates the issues.

Further testing are then performed with the target software, while the hard-
ware is in development. In the absence of a JTAG cable, RS232 test print messages
are used to facilitate the debugging process.

5.2 Hardware Interfacing

Lim Wee Guan

This section describes the tasks that needed to be performed to interface
the custom VHDL blocks to the Microblaze. The initial steps are done in the
XPS Wizard that creates a user_logic.vhd and a custom_core.vhd in the
pcores\custom_core\hdl\vhdl\ directory.

38

The next step is to customize the two VHDL files, essentially to update
the entity to incorporate the additional user files and instantiating any of the
custom VHDL blocks. It may also be necessary to modify the Xilinx code in
the user_logic.vhd file that allows the user registers to be read by the custom
logic. In the case of the VGA Controller, the large number of user registers
(50) meant that the Xilinx logic in user_logic.vhd takes up a large amount of
resources. By removing the registers, it was possible to free up FPGA resources,
but the draw-back is that the Microblaze is unable to read back data that has
been written to the user registers. This is not a big problem, as all data in
this application is highly dynamic and changes are written into the registers
regularly without the need to read back any values.

The last step in the interfacing is to modify the .mpd and .pao files in the
pcores\custom core\data\ directory to inform XPS about the user ports in
the custom logic and the file synthesis order respectively. After all this, XPS
needs to be told to read the changed .mpd and .pao files by re-importing the
peripheral through the XPS Peripheral Wizard.

As described in Section 3.2.1, it is important for the custom logic to be tested
in a standalone fashion prior to attempting to interface it with the Microblaze.
This will ensure that one variable (the custom VHDL code) is fixed before
changing the other variable (Microblaze interface). Another limitation of the
XPS is that it has very limited support for simulation e.g. ModelSim and thus
troubleshooting the interfacing with Microblaze is tricky enough without having
non-deterministic VHDL blocks being added into the equation.

The last stumbling block faced in the project is that the XPS environment
is rather software development oriented in contrast with the hardware oriented
ISE. Thus, it was found that ModelSim/ISE is much more suitable for hard-
ware development than working within XPS. This however, is a shame, as two
independent workflows, one for hardware and one for software does not make
the environment optimal for integrated development of hardware and software.

5.3 Testing

Chaiwat Sittisombut

All three user interfaces (Keyboard, Monitor and 7-segment) and the game
algorithm were integrated and tested. It can be concluded as following:

A 104-key IBM compatible PS/2 keyboard was used during the test. The
LEFT and RIGHT keys in the cursor control are functional. However, controlling
the shooter ball via the LEFT and RIGHT keys on the numeric keypad causes the
shooter ball move to the far left or right.

A 247 Sun Microsystems VGA monitor and a 19”7 HP TFT monitor were
tested to display the game. The game can be displayed on both monitors without
any problems.

The four 7-Segment displays on Nexys2 board displayed the 4 digits properly
and gave results similar to that in the game algorithm (viewed from UART).
The game could be played for more than an hour without any unpredictable
bugs.

39

Chapter 6

Conclusion

Ang Lay Hong, Chaiwat Sittisombut, Lim Wee Guan

This project was done in fulfillment of the course requirements for EDA385,
Embedded Systems Advanced Course. To quote from the Course website, this
course aims to allow students to “complete their knowledge of embedded systems
acquired during the basic Embedded Systems Design course (EDA380) with
practical experience. More often than not, going from theory to practice is so
demanding that students without any practical experience feel lost even having
a good theoretical background. This course will give you the essential experience
required to fill in this gap.”

In addition to the above stated objective of gaining practical development
experience, this course also gave the opportunity to obtain real-world insights
in working on embedded systems projects, complete with tight deadlines and
having to work as a team with multiple members, some of whom have agendas
that differ from the rest of the group’s objective and goals. That said, it was
fulfilling to be able to define, prototype and build a system from scratch, all in
six weeks.

6.1 Lessons Learnt

The key lessons learnt in the project is that the traditional development method-
ology of building the hardware and then moving on to building the software
once the hardware platform is ready/stable does not work for projects with
tight deadlines such as this. Some form of concurrent hardware and software
development is necessary else either party will be waiting for the other, and the
project deadline will not be met.

It was also realized that integration and testing takes up a sizeable amount
of time, and is often the key determining factor for success/failure in the devel-
opment of the system. This is especially true in the case of embedded system
integration where both the hardware and software are being integrated are un-
stable.

40

Bibliography

[1]

Zuma (video game). http://en.wikipedia.org/wiki/Zuma_(video_
game), Nov 2008.

Digilent Nexys2 board reference manual. http://www.digilentinc.com/
Data/Products/NEXYS2/Nexys2_rm.pdf, June 2008.

Nexys base system builder guide for EDK. http://www.digilentinc.com/
Data/Products/NEXYS2/Digilent_Nexys_Board_Support_Package _V_1_
20.zip, Mar 2008.

Adam Chapweske. The PS/2 mouse/keyboard protocol. http://www.
computer-engineering.org/ps2protocol/, May 2003.

IBM Corp. 128-Bit Processor Local Bus Architecture Specifications, May
2007. Version 4.7.

Xilinx Inc. Embedded System Tools, Reference Manual. EDK 10.1, Service
Pack 2.

41

