

Lund University

Department of Computer Science

EDA 385 the Embedded System Design –
Advanced Course

A Simple Video Game - Snake

Date: 2008-10-18

Students Name: Yuan Mengze (sx07my3@student.lth.se)

 Cai Meng (sx07mc7@student.lth.se)

Project Supervisor: Flavius Gruian & Per Andersson

 2

Abstract

A simple video game ‘snake’ is introduced in this report. The project was based on the

embedded system design which required both hardware and software implementation.

Digilent Nexys2 development board and Xilinx EDK platform were employed in this

project. The project was divided into two parts: the hardware was designed by Yuan

Mengze, which contained a VGA controller and a PS2 keyboard controller, while Cai

Meng programmed the embedded C on the MicroBlaze.

 3

CONTENTS

1. Introduction 5

1.1.Digilent Nexys2 Board 5

1.2.MicroBlaze 5

1.3. EDK 5

2. Hardware implementation 6

2.1.Hardware overview 6

2.2.VGA controller 7

2.2.1. VGA overview 7

2.2.2. Hardware implementation 7

2.2.3. Synthesis analyzes of VGA controller 9

2.3.PS2 keyboard Controller 10

2.3.1. PS2 keyboard protocol 10

2.3.2. Hardware implementation 10

2.3.3. Synthesis report 11

2.4.Synthesis analysis of the hardware design 12

3. Software implementation of the video game - Snake 13

3.1.Introduction of our Snake video game 13

3.2.Design overview of software implementation 13

3.3.Detailed descriptions of software design 15

3.3.1. Display 15

3.3.2. Initialization of the game 15

3.3.3. Snake moving function 15

3.3.4. Food eating 16

3.3.5. Delay 17

3.3.6. Game status 17

3.4.Memory size requirement 17

 4

4. Installation and user manual of the video game 17

5. Contributions 19

6. Conclusion and future work 19

7. Reference 20

8. Acknowledgment 20

 5

1. Introduction

This chapter introduces the development board and design tools which were utilized

in this project.

1.1. Digilent Nexys2 Board

 The project was implemented on the Digilent Nexys2 Board which is a powerful digital

system design platform built around a Xilinx Spartan 3E FPGA. The system frequency

of the Nexys2 board is 50 MHz. Figure 1.1 shows the Nexys2 board.

Figure 1.1 Digilent Nexys2 board [2]

1.2. MicroBlaze

The MicroBlaze is a soft processor core designed for Xilinx FPGAs from Xilinx. As a

soft-core processor, Microblaze is implemented entirely in the general-purpose memory

and logic fabric of Xilinx FPGAs.

1.3. EDK

Xilinx's EDK (Embedded Development Kit) was employed in this project, which is the

development package for building Microblaze embedded processor systems in Xilinx

FPGAs.

 6

2. Hardware implementation

This chapter introduces the hardware implementation in detail. A VGA controller and

a PS2 keyboard controller were built in FPGA.

2.1. Hardware overview

The on-chip MicroBlaze communicates with the user logics through PLB bus, as

illustrated in figure 2.1. The IP core PLBV4.6 was automatically generated under EDK

platform when a user peripheral was created. The PLBV4.6 generates a simplified PLB

bus for the user logics. The on-chip Block Select RAMs were used to store the pixel

data, which were generated by the MicroBlaze and transferred through PLB bus. The

VGA controller was combined with synchronization counters and address generators.

The counters generated the horizontal and vertical synchronize signals for the VGA

monitor. While the address generator generated the address for reading the pixel data

from the BRAM and sent them to RGB ports of the VGA monitor. The PS2 controller

received the scan code from keyboard in serial and sent it to MicroBlaze through PLB

bus in parallel. XPS_Timer is the IP core provided by Xilinx, which was used to

generate random data for MicroBlaze. More detailed description of XPS_Timer will be

introduced later in the software design.

Figure 2.1 Design overview

 7

2.2. VGA controller

2.2.1. VGA overview

Figure 2.2 shows the system signals for a 640x480 VGA monitor. A VGA controller

was built to generate the necessary signals for the VGA to display an image by

coordinating the electron beam to be scanned over the viewing screen of the VGA. The

actual image is obtained by a sequence of horizontal lines that are constantly refreshed.

The screen refresh process begins in the top left corner and paints one pixel at a time

from left to right. At the end of the first row, the row increments and the column address

are reset to the first column. Once the entire screen has been painted the refresh

process begins again from the top left corner.

Figure 2.2 System signal for VGA [3]

2.2.2. Hardware implementation

 An area of 512x384 on the VGA screen was used to display the video game in our

project. The block diagram of the VGA controller is shown in figure 2.3. The H_counter

and V_counter were used to generate horizontal (VGA_hsync) and vertical (VGA_vsync)

synchronized signals for VGA monitor respectively. They are pulse signals which

indicate the beginning of a new frame or row.

 The size of the on-chip BRAM was 64x48x2 = 6144bit, which indicates that the length

was 3072 and the width of the BRAM was 2 bit. Therefore 4 different colours were

 8

available for the VGA. The detailed description of Bram utilization is introduced in

software sections.

Figure 2.3 VGA controller

Reading address for BRAM was provided by the address generator and the read

control signal was given by the control signal component. The address generator was

controlled by Pixel_enable and Clock_divider components. The frequency of the VGA is

25 MHz while the system clock is 50MHz. Therefore a clock divider was applied for

generating 25MHz clock signal to the address generator. Since only an area of 512x384

on the VGA screen were used in this project, the range of the address for BRAM was

from 0 to 512x384 -1, which indicates that the output of the address generator was18 bit

wide. As shown in figure 2.4, the bits from 0 to 8 represent the pixels in a row while the

bits from 9 to 17 represent the vertical lines of the VGA. The length of the BRAM was

64x48 as mentioned previously and the address width for BRAM was 12 bit. Therefore

we extracted appropriate bits from the output of the address generator and combined

them as the address for the BRAM, as shown in figure 2.4. The 3 to 8 bits were

extracted for horizontal lines and 12 to 17 bits were extracted for vertical lines. Then the

data in a memory slot represented 64 pixels on VGA screen instead of 1 pixel as

512x384 is 64 times of 64x48.

 The two bits output of the BRAM was the control signal for the colour_gen component

which generated appropriate colours to VGA monitor.

 9

Figure 2.4 bits arrangement for address

2.2.3. Synthesis analyzes of VGA controller

The Micro Statistic report for the VGA controller (not including PLBV4.6 IP core) is

shown in table 2.1. 8 comparators, 1 multiplexer, 3 adders and 43 registers were

applied in our project. The dual port block RAM was used to store pixel data for VGA

monitor.

Components Utilization

1072x2-bit dual port block RAM 2

4x8-bit ROM 1

Adders/subtractors 3

Registers 43

Comparators 8

Multiplexers 1

Table 2.1 Micro Statistic of VGA controller

The logic utilization for the VGA controller (not including PLBV4.6) is shown in table

2.2. The logic utilization is low, only 66 slices are used.

Select Device: 3s1200efg320-4

Logic Used and Available Utilization

Number of slices 66 out of 8672 0%

Number of slice flip flops 42 out of 17344 0%

Number of 4 input LUTs 121 out of 17344 0%

Number of BRAMs 1 out of 24 3%

Number of bonded IOBs 63 out of 250 25%

Table 2.2 Logic Utilization of the VGA controller

 10

 The timing report for the VGA controller is shown in table 2.3. The frequency of the

VGA controller is not very high since the delay of the critical path is 12.2ns. The

frequency can be increased by pipelining registers and cut off the combinational logics.

Select Device: 3s1200efg320-4

Minimum period 12.201ns

Maximum Frequency 81.961MHz

Table 2.3 Timing report of the VGA controller

2.3. PS2 keyboard Controller

2.3.1. PS2 keyboard protocol

The keyboard uses a serial protocol with 11-bit frames, as illustrated in figure 2.5. The

first bit is a start bit which is followed by 8 data bits scan code or released code. The

parity bit is set if there is an even number of 1's in the data bits and reset (0) if there is

an odd number of 1's in the data bits.

Figure 2.5 PS2 keyboard protocol [4]

The parity bit was ignored in the project. The stop bit indicates that one data transfer

is over. The keyboard sends clock signal to the host as well. Data sent from the PS2

controller to the host is read on the falling edge of the clock signal. The clock frequency

must be in the range 10 - 16.7 kHz which means that the clock must be high for 30 - 50

microseconds and low for 30 - 50 microseconds. Data line should be sampled in the

middle of each cell, i.e.15 - 25 microseconds after the appropriate clock transition. In

our project the data line was sampled after 25 microseconds in each clock cycle.

2.3.2. Hardware implementation

 The hardware design of the PS2 keyboard controller is illustrated in figure 2.6. The

keyboard controller was constructed by three sub components.

 11

Figure 2.6 PS2 keyboard controller

 The data enable module sent an enable signal to the bit counter module after 25

microseconds, indicating that the one bit data can be sampled. The system clock

frequency is 50MHz; therefore the data enable module generated the enable signal

after 1250 clock cycles since 1250 / 50MHz = 25 ms.

 The bit counter counted from 0 to 10 according to the keyboard clock signal and

detected the start bit at 0. A store signal was sent to the serial to parallel shift register

when the bit counter module counted from 1 to 8, which indicated that the 8 bit data

were shifted into the shift register in serial. The data were sent to the PLB bus in parallel

when the bit counter detected the stop bit and the PLB read no write signal was set to 1.

2.3.3. Synthesis report

The Micro Statistic report for the PS2 keyboard controller (not including PLBV4.6 IP

core) is shown in table 2.4. 2 adders and 13 registers were applied in this module. The

logic utilization is also very low, only 43 slices were used. The critical path delay was

6.442ns and the frequency of the module was 155.231 MHz, which was much higher

than the VGA controller.

Components Utilization

Adders/subtractors 2

Registers 13

Table 2.4 Micro Statistic of PS2 keyboard controller

 12

2.4. Synthesis analysis of the hardware design

Table 2.5 shows the logic utilization of the system hardware design, including the

MicroBlaze and all other peripherals such as XPS timer and debug module. The logic

utilization is increased a lot since more components are involved. 9 BRAMs and 3

multipliers were employed in our project. Furthermore, 1760 out of 8672 slices were

applied. The delay of the critical path was 9.667ns and the frequency was 93.744 MHz.

Select Device: 3s1200efg320-4

Logic Used and Available Utilization

Number of slices 1760 out of 8672 20%

Number of slice flip flops 1989 out of 17344 11%

Number of 4 input LUTs 2723 out of 17344 15%

Number of BRAMs 9 out of 28 32%

Number of MULT18X18SIOs 3 out of 28 10%

Table 2.5 Logic utilization of the system hardware

 Figure 2.7 and 2.8 shows the bus connection under EDK Xilinx Platform Studio. The

user defined peripherals PS2 controller and VGA controller are connected to PLB bus.

Figure 2.7 Bus interface of the system design

 13

Figure 2.8 Output ports connection of the system design

3. Software implementation of the video game - Snake

This chapter introduces the software implementation of the simple video game.

3.1. Introduction of our Snake video game

The player controls a long, thin creature, resembling a snake, which roams around on

a bordered plane, picking up food, trying to avoid hitting its own tail. Each time the

snake eats a piece of food, its tail grows longer, making the game increasingly difficult.

The user controls the direction of the snake's head (up, down, left, or right), and the

snake's body follows. The player cannot stop the snake from moving while the game is

in progress. The snake can go through the wall in our game. [5]

3.2. Design overview of software implementation

 The software part was implemented by applying embedded C. The realization of the

video game was applied by following methods.

 The pixel data for the video game were written into a 64x48 on chip BRAM by

MicroBlaze

 An array of integers was used to represent the snake on the screen

 Food was created randomly at different points on the screen

 14

 Specify different colours for the background, food, wall and the snake

 The moving speed of the snake was controlled by a delay function

 The game will be ended in two way: game

over – the snake hits itself or win the game –

reach the maximum length of the snake

 The length of the snake will be increased by

one if the snake eats a food

 The snake was controlled by direction key

on the PS2 keyboard

 The flow chart of the software implementation is

shown in figure 3.1. The colour of the border wall,

snake and the food are initialized at Initial Game step.

 The snake moves according to the direction keys at

Moving step. The Meet food step detects whether the

snake eat a food after its movement. If yes, then goes

to Node increment & Food generated step. If no, then

goes to key Protected & Delay for moving step.

The length of the snake will increase by one and

generate a new food at Node increment step & Food

generated step.

The Game Over step detect whether the snake hits

itself. If yes, then a new game is started. If no, then

goes to Win the game step.

At Win the game step, if the length of the snake is

equal to the maximum length, then a new game is

started as in Game Over step. If not, the game

continues. The maximum length of the snake in our

design is 100 nodes.

Figure 3.1 System Flow chart

 15

3.3. Detailed descriptions of software design

3.3.1. Display

The pictures displayed on the VGA screen are realized by setting appropriate pixel

values to the on-chip BRAM. The two bit data in a memory slot represent an 8x8 pixel

area on the VGA screen, named pixel point in this report. Each pixel point on the

screen has its exclusive a and b coordinate and its absolute address in the BRAM is

generated according to equation below

Address = (base address) + a + b x (width of the game)

The base address of the BRAM can be found in xparameter.h file and the term a + b

x (width of the game) is the offset of the base address.

3.3.2. Initialization of the game

The game is initialled at the Initial game step which includes background initialization,

drawing the border of game area, snake initialization and generating the first food.

First of all, the game background is set to black colour. Then the boarder wall is

drawn as yellow colour, which indicates the area of the video game. The width of the

boarder is 2 pixel points and the area of the video game is 40x30 pixel point.

The snake is initialized by setting the following data: Snake’s head position on the

screen, the moving direction of the snake and the initialized length of the snake. The

positions of the nodes which follow the snake’s head are set according to the address of

the snake’s head and moving direction of the snake.

The first food is initialized by generating a random position on the screen, and food

flag is set to ‘0’, which indicates that a food exists on screen.

3.3.3. Snake moving function

3 steps are needed for a snake movement, as illustrated in figure 3.2. First of all, the

last node of the snake is set to background colour, as shown in 3.2(b). Each snake

node copies the address from previous node except the first node at second step. The

address of the first snake node is generated according to the moving direction. Then the

first node of the snake is filled with snake colour as shown in 3.2(d)

 16

Figure 3.2 (a) Initial step, (b) Remove colour of the last node

(c) New address for each snake node, (d) Fill in the first snake node

3.3.4. Food eating

Meet food step examine the address of

the snake’s head and the address of

random food. The snake eats the food

when those two addresses are equal, then

the length of the snake increases by one. A

random address for the new food is

generated by my_rand (a, b) function. It

generates a random number between b

and a by using the equation below:

y=x %(b-a) +a

The value x is given by the equation x =

((x+34213)*71411-34267)*59. The initial

value of x is obtained by XPS_Timer.

Otherwise, skip this step and enter the

keyboard detection& delay for moving step.

Figure 3.3 Flow chart of the keyboard detection & delay function

 17

3.3.5. Delay

The flow chart for keyboard detection & delay for moving step is shown in figure 3.3.

The moving speed of the snake is set by using a delay function after snake movement.

A counter will count from initial value to 0.

The interrupt based PS2 keyboard controller was not used in this project. Therefore

the keyboard detection is done by keeping reading the registers of the PS2 controller in

the delay function. When a key was pushed and detected, the moving direction will be

changed according to current direction of the snake and the scan code of the pushed

button. Then the program breaks the delay function. Otherwise, the delay function will

not be ended until the counter counts to 0.

3.3.6. Game status

There are two possible ways to end the video game: game over or win. Game over

step detects whether the snake hits itself, which means that the address of the head is

equal to the address of any other snake node. The game is not over when the snake

hits the well. The snake will go through the well and appear on other side of the game

area. Win the game step detects whether the length of the snake reaches the maximum

value. The Start a new game step initializes the game again if game over or wins the

game happens.

3.4. Memory size requirement

 The memory size for the software is 8 k in total, since the program is small. The BRAM

size occupied for MicroBlaze is 16 KB, which was set in the beginning of the project.

Therefore the memory size is enough for our project.

4. Installation and user manual of the video game

The download.bit file will be generated when the software is complied successfully

and hardware bitstream is generated in EDK Xilinx Platform Studio. In order to

download the project on the Digilent development board, the Digilent Adept Suite needs

to be downloaded from the Digilent home page: www.digilentinc.com. After installing the

Digilent Adept Suite, start the Export as shown in figure 4.1.

 18

Figure 4.1 Export main window

 Click Browse button on the top right of the Export window and find the download.bit

in the implementation folder. The project will be downloaded on the board by clicking

Program chain button.

Furthermore, a PS2 keyboard and a VGA monitor are needed for our video game.

The keys W,A,S and D represent up, left, down and right respectively, as shown in

figure 4.2.

Figure 4.2 Control keys for the Snake game

Figure 4.3 shows a screen shot of our video game and the lab environment. The

border wall was in yellow and the colour of the snake was blue and the food was in red.

The background was set to black.

 19

Figure 4.3 Screen shot and lab environment of the video game Snake

5. Contributions

 The project was divided into two parts and we were two people in a group. Yuan

Mengze accomplished the hardware part, including a VGA controller and a PS2

controller. Cai Meng realized the video game Snake by applying embedded C on the

hardware platform.

6. Conclusion and future work

 We have completed our knowledge of embedded system design after we finished the

project and obtained more experience of hardware/software co-design. Since it was the

first time that we built an embedded system on our own, a lot of problems were

encountered during our work on the project.

 For the hardware part, we took a long time to familiar with the protocol of all the

peripherals and the PLB bus specification. Then the VGA controller was accomplished

in two weeks after reading the reference design provided by the Digilent home page and

the PS2 controller was built in an afternoon. One of the most important problems of our

hardware design was the frequency difference. The system frequency is 50MHz while

the VGA monitor is 25 MHz, therefore a clock divider is needed for our design. We

didn’t notice that in the very beginning and it took a long time to fix the problem. Another

problem was the complexity of the PLB bus interface. We took a long time to familiar

 20

with the control signals provided by PLB bus. But now we have more experience of

interfacing the PLB bus with other peripherals.

For the software part, we test our program by applying Visual C at the beginning.

Then we encountered some problems when we implemented our program on the on-

chip MicroBlaze. Although the basic syntax of the general C and embedded C are

almost the same, the difference between them can not be ignored. The library provided

by MicroBlaze is much less than in PC, therefore we have to write our own functions

instead. For instance, we wrote a function to generate random data which has the same

functionality of the rand () in general C programming. Another difference that needs to

be taken into account is the address of the memory. In general C, the addresses for the

VGA screen are generated by functions, while for embedded system design, we have to

generate the addresses for the BRAM by adding the offset to the base address of the

BRAM.

The project can be extended and optimized if we have enough time. For instance, a

microphone can be used to generate the background music of our video game. 7

segment led can be employed to display the scores of the game and setting bonus food

for the snake can be added as well.

7. Reference

[1] http://www.cs.lth.se/EDA385/

[2] Digilent Nexy2 Board Reference Manual

[3] Digilent VGA Component Reference Design

[4] http://www.computer-engineering.org/ps2protocol/

[5] http://www.wikipedia.org/

8. Acknowledgment

Finally thanks for the help given by the project supervisors Flavius Gruian, Per

Andersson and thanks for the help from our great classmates: Li Jia from Teris group

and Wee Guan Lim & Lay Hong Ang from Zuma group.

