
Embedded System Design - Advanced Course—PWM report ver.b--sx07lm7--sx07qz6--Lund University

Abstract:

Page 1 of 14

The main feature of this design is a PWM generator, observed by audio signal—
music. There is a visual effect feature responding to the music tune as well.

The final design can play music and generate a visual effect to VGA screen. It
plays different section of music according to button input. The music data is in C
structure data which is response for PWM frequency. The pulse signals are filtered
and amplified by PmodAMP1, then output sine wave to speaker.

Visual effect function is written in program, it is a altering square responding to
music tune. The screen size is 160x120, background color is dark green and
square color is purple.

The design is different from original proposal because:
A. FPGA resource limitation;
B. To achieve a better listening effect.

Embedded System Design - Advanced Course—PWM report ver.b--sx07lm7--sx07qz6--Lund University

Catalog:

Page 2 of 14

Abstract page 1
1. Introduction

1.1 Architecture page 3
1.2 Work Division page 3
1.3 Schedule page 3

2. Hardware Design
2.1 Theory Study page 4
2.2 Hardware Specification page 4
2.3 PWM generator Design page 5
2.4 Verification of PWM generator page 5
2.5 VGA controller modification page 7

3. Software Design
3.1 Main Frame page 7
3.2 Music Format page 8
3.3 Graphic algorithm page 8

4. Realization
4.1Board configuration

4.1.1 Add pins to ucf file page 9
4.1.2 Add port in mhs file page 9
4.1.3 System blockview page 10

4.2 Synthesis result
4.2.1 PWM generator page 11
4.2.2 VGA controller page 11
4.2.3 Whole system page 11

4.3 Timing page 12
4.4 Previous failure reason page 12
4.5 Console Message when debugging

4.5.1 Success example page 12
4.5.2 Fail messages page 13

5. Conclusion page 13
6. Appendix

6.1 Installation guide page 13
6.2 References page 14
6.3 Acknowledgment of Contribution page 14

Embedded System Design - Advanced Course—PWM report ver.b--sx07lm7--sx07qz6--Lund University

 1. Introduction

 1.1. Architecture

The design includes two IPs, one is VGA controller, which output graphic to screen.
The other is PWM generator, which output pulse signal to audio filter and amplifier
(PmodAMP1). Software will receive switch inputs and convert to divider values for
PWM generator, and it also calculates graphic according to switch input and
algorithm.

 1.2.Work Devision

Job 1. Establish system frame; --Mengze Yuan

Job 2. Software programing; --Meng Cai, Lin Ma

Job 3. Graphic algorithm; --Qiran Zhou

Job 4. PWM logic design; --Lin Ma

Job 5. Design validation and change; --Lin Ma, Qiran Zhou

Mengze and Meng exited our team after the 2nd week, so we got only two persons
to finish following jobs.

 1.1.Schedule

WK1 WK2 WK3 WK4 WK5 WK6 WK7

Job1

Job2

Page 3 of 14

Drawing 1: architecture

Nexys 2 board

3 bit button

VGA controller PWM generator

Microblaze (Software)

PmodAMP1

Screen

Embedded System Design - Advanced Course—PWM report ver.b--sx07lm7--sx07qz6--Lund University

Job3

Job4

Job5
Table 1 : schedule

When Job5, I encountered some difficulties that make me cannot finish this project
on time. This cost me 3 more weeks to finish.

 2. Hardware design

 2.1.Theory Study

In order to output a reasonable sound, I need to study some music basic. The
piano musical scale start from 264Hz, and up to 2112Hz. (But human can hear
up to 20KHz). The following table means I must constraints the 21 scales to
specific frequencies.

 Table 2: musical scales and frequencies

1KHz is near the most sensitive tone for human. And because human can hear
up to 20KHz sound, it's better to use higher frequency to sample a wave.

I use a 40KHz triangle wave to sample a 1KHz sin wave, then simplified the
result to 20 set/reset points. As follow:

Table 3: corresponding pulse sets

According to these, we can calculate the system parameters.

 2.1.Hardware specification

Following is the table of rough system info

Clock frequency 50MHz

Output1 Pulse 264Hz to 1980Hz

Output2 VGA screen

Input 3bit push buttons

PWM generator Hardware (VHDL)

VGA controller Hardware (VHDL)

VGA memory Address 0 to 160x120-1

Graphic algorithm Software (C)

Page 4 of 14

Scale b1 b2 b3 b4 b5 b6 b7
Freq 264 297 330 352 396 440 495
Scale 1 2 3 4 5 6 7
Freq 528 594 660 704 792 880 990
Scale #1 #2 #3 #4 #5 #6 #7
Freq 1056 1188 1320 1408 1584 1760 1980

Pulse set 0 21 44 68 90 110 128 146 163 181
Pulse reset 19 37 54 72 91 111 132 156 179 200

Embedded System Design - Advanced Course—PWM report ver.b--sx07lm7--sx07qz6--Lund University

System control Software (C)

 Table 4: system parameters

And the calculated tune input value:

So theoretically, we can obtain a rather good system parameter that the highest
frequency shift is only 0.248%.

 2.2.PWM generator Design

Though there is a lot of work to do
before this step, the design itself is quite
simple.

In my state machine, there is only two
states, 'reset' and 'working'. All actions,
including frequency change, can operate
in this single state.

The drawing 2 on right hand is a
structure of PWM generator. When
'Divider' receive input values, it saves
this new value. After PWM counter
finished one cycle, it will load this new
value as clock divider. The followed logic
will judge if now is the time to set or
reset pulse by looking up Table.

Connection between PWM generator
and microblaze is FSL, there's only one
direction, from microblaze to PWM. And
PWM will send the pulse output directly to JA1 port on board.

 2.3.Verification of PWM generator

Page 5 of 14

Table 5: calculated tune input value

Scale b1 b2 b3 b4 b5 b6 b7
divider 947 842 758 710 631 568 505
Freq 263,99 296,91 329,82 352,11 396,2 440,14 495,05
Shift 0,003% 0,030% 0,056% 0,032% 0,050% 0,032% 0,010%
Input 0 105 189 237 316 379 442
Scale 1 2 3 4 5 6 7
divider 473 421 379 355 316 284 253
Freq 528,54 593,82 659,63 704,23 791,14 880,28 988,14
Shift 0,103% 0,030% 0,056% 0,032% 0,109% 0,032% 0,188%
Input 474 526 568 592 631 663 694
Scale #1 #2 #3 #4 #5 #6 #7
divider 237 210 189 178 158 142 126
Freq 1054,85 1190,48 1322,75 1404,49 1582,28 1760,56 1984,13
Shift 0,109% 0,208% 0,208% 0,249% 0,109% 0,032% 0,208%

Drawing 2: PWM generator block view

Embedded System Design - Advanced Course—PWM report ver.b--sx07lm7--sx07qz6--Lund University

Followed waveform shows the PWM generator start to work when it received the
first data, and give back a read acknowledge.

Followed waveform shows, when input data changed, divider load the new data
to calculate.

Followed waveform shows output pulse (yellow signal). When design received a
too large input value, it won't apply. Only if received a proper value, it will update
the divider(signal 'div'). The output pulse frequency will change according to

Page 6 of 14

Drawing 3: waveform--switch to working state

Drawing 4: waveform--divider load new data

Embedded System Design - Advanced Course—PWM report ver.b--sx07lm7--sx07qz6--Lund University

divider.

We can also see the output frequency is correct and in the range of hearing.

 2.4. VGA controller modification

Hardware VGA controller is a feature modified from the origin version. At last I'd
have to re-design this part to find out how to control the memory address, I took
the Nexy-2 manual as reference. The origin script is a little fuzzy.

Because FPGA cannot support too many resources and a large graphic will
occupy mass CPU time, I decide to limit the graphic as 160x120. Then it's 1/4 of
original height and length, the data are 16 times less.

Originally, graphic memory should be 640x480x8bit, but I have decreased it to
160x120x1bit. Shrink 8bit to 1bit is because I only need two colors.

 3. Software design

 3.1.Main frame

Software mainly have two functions, graphic algorithm and relaying signals to
PWM generator.

Followed drawing is how the graphic algorithm works. There is a counter
continuous operate the counting cycle, and the function will calculate pixel data
according to switch input value and counter value. There are totally four varies,
tune, jitter x, and y axis.

Page 7 of 14

Drawing 5: pulse output

Embedded System Design - Advanced Course—PWM report ver.b--sx07lm7--sx07qz6--Lund University

Followed drawing shows how software relay data to PWM. First, push button
input value to select which section to start playing, then each tune will set timer
length to decide when to go next.

 3.2. Music format

typedef struct {

char name[4];

u32 gap; //blank time between cadence, swing.

u32 tune[140];

u32 elapse[140];

} music_track;

The music is defined as a structure data, containing name, gap length, tunes,
and elapse for each tunes. Tune timer will set according to elapse when playing.

I composed a melody according to the song 'eyes on me'.

 3.3.Graphic algorithm

jitter=play.tune[N_tune]%64;

w=0;

for(; y<120; y++) {

for(x=0; x<160; x++) {

w+=7;

if ((x>70-jitter+w%25&x<90+jitter-+w%25)&(y>80-jitter&y<80)&!(x==y|
x==160-y))

pix[x+y*160] = -1;

Page 8 of 14

Drawing 6: VGA controller

SynchBRAM

HW: VGA controller

Graphic
f(tune,jitter,x,y)

write

Drawing 7: generate music

3bit push
buttons PWM generator

FSL downlink
Music section Tune timer

Embedded System Design - Advanced Course—PWM report ver.b--sx07lm7--sx07qz6--Lund University

else

pix[x+y*160] = 0;

}

}

We wrote a simple algorithm to control the visual effect on display. It depends on
screen position, the music tune and random jitter. Basically, it should appear as
a jumping square with 'V' sign. It's height and length will vary according to tunes.
The sample appearance is as follow.

 4. Realization

 4.1.Board configuration

 4.1.1.Add pins to ucf file

Module VGA_CONTROLLER constraints
Net Red<0> LOC= R9;
Net Red<1> LOC= T8;
Net Red<2> LOC= R8;
Net Green<0> LOC= N8;
Net Green<1> LOC= P8;
Net Green<2> LOC= P6;
Net Blue<0> LOC= U5;
Net Blue<1> LOC= U4;
Net Hsyn LOC= T4;
Net Vsyn LOC= U3;

Module PWM_GEN constraints
Net pulseout LOC= L15; ##JA1

 4.1.2.Add port in mhs file

PORT Red = Red, DIR = O, VEC = [0:2]
PORT Green = Green, DIR = O, VEC = [0:2]

 PORT Blue = Blue, DIR = O, VEC = [0:1]

 PORT Hsyn = Hsyn, DIR = O

 PORT Vsyn = Vsyn, DIR = O

 PORT pulseout = pulseout, DIR = O

Page 9 of 14

Drawing 8: visual effect

Embedded System Design - Advanced Course—PWM report ver.b--sx07lm7--sx07qz6--Lund University

 4.1.3.System Block View

Page 10 of 14

Drawing 9: system block view

Embedded System Design - Advanced Course—PWM report ver.b--sx07lm7--sx07qz6--Lund University

 4.2.Synthesis result

 4.2.1. PWM generator

Number of Slices: 140 out of 8672 1%

Number of Slice Flip Flops: 99 out of 17344 0%

Number of 4 input LUTs: 265 out of 17344 1%

Number of IOs: 39

Number of bonded IOBs: 0 out of 250 0%

PWM generator is a rather small design, it doesn't cost too much resources.

 4.2.2. VGA controller

Number of Slices: 115 out of 8672 1%

Number of Slice Flip Flops: 123 out of 17344 0%

Number of 4 input LUTs: 157 out of 17344 0%

Number of IOs: 211

Number of bonded IOBs: 0 out of 250 0%

Number of BRAMs: 4 out of 28 14%

Before I modified this part, the BRAM consumption was 56%, then there's
not enough left for processor and other features.

 4.2.3. Whole system

Number of Slices: 2271 out of 8672 26%

Number of Slice Flip Flops: 2630 out of 17344 15%

Number of 4 input LUTs: 3424 out of 17344 19%

Number used as logic: 2977

Number used as Shift registers: 191

Number used as RAMs: 256

Number of IOs: 67

Number of bonded IOBs: 67 out of 250 26%

IOB Flip Flops: 64

Number of BRAMs: 20 out of 28 71%

Number of MULT18X18SIOs: 3 out of 28 10%

Number of GCLKs: 1 out of 24 4%

Number of DCMs: 1 out of 8 12%

Download.bit size is 469KB.

Page 11 of 14

Embedded System Design - Advanced Course—PWM report ver.b--sx07lm7--sx07qz6--Lund University

 FPGA.flw size is 4KB.

 4.3. Timing

Offset: 14.608ns (Levels of Logic = 12)

 Source: vga_ctrl_0/vga_ctrl_0/USER_LOGIC_I/x_reg_8 (FF)

 Destination: vga_ctrl_0_VGA_red_pin<0> (PAD)

 Source Clock: clock_generator_0/clock_generator_0/DCM0_CLK_OUT<0> rising

 Data Path: vga_ctrl_0/vga_ctrl_0/USER_LOGIC_I/x_reg_8 to vga_ctrl_0_VGA_red_pin<0>

 Gate Net

 Cell:in->out fanout Delay Delay Logical Name (Net Name)

 -- ------------

 --

 Total 14.608ns (9.121ns logic, 5.486ns route)

 (62.4% logic, 37.6% route)

Critical path is from VGA memory address generator to red color output. Delay is
14.608ns. It fits the system requirement(20ns).

 4.4.Previous failure reason

A. Not enough BRAM resources. Sometimes, especially when using evaluation
version XPS, there's no error reported;

B. Set wrong speed grade(-4), this leads no response after programing FPGA;

C. Music data in C code is too long, this will lead a performance error after
programing FPGA;

D. I can only initial one music per time. It's possible to select section to start
playing ,but every time I tried to select multiple musics, the hardware won't
support, it will hang in half. I guess the data size exceeds hardware memory
when running. This guess is based on: (1). even if I represent a second song in
main(), but not play it, the system would still hang; (2). each individual song can
be played normally; (3). there's no error reported when compiling.

 4.5.Console Message when debugging

 4.5.1. Success example

Waiting for input

Input Value is 2

Page 12 of 14

Embedded System Design - Advanced Course—PWM report ver.b--sx07lm7--sx07qz6--Lund University

timer self test success

--now playing “eyes” –

entered Loop1. playing 1th tune

timer started

entered Loop2. Tune elapse=50000000

timer now is 1250000

…...

entered Loop1. playing 2th tune

timer started

entered Loop2. Tune elapse=20000000

timer now is 4550000

…...

--exit main--

 4.5.2. Fail messages

Waiting for input

Input Val......

timer self test fail, code=1

--now playing “......

entered Loop1. playing …...

 5. Conclusion

For the hardware part, PWM generator and VGA controller are implemented
successfully.

For the software part, visual effect is working correctly, it will respond to tune, and
have some jitter. Music playing is also correct when represent only one melody. It
can select section to play.

 6. Appendix

 6.1. Installation guide

Page 13 of 14

Embedded System Design - Advanced Course—PWM report ver.b--sx07lm7--sx07qz6--Lund University

It's simple. Plug PmodAMP1 to JA1, link VGA cable, then compile all things and
burn to board. Press push button to choose music section, there will be sound
out put to jacket on PmodAMP1, and visual effect on screen.

If you want to choose another song, change C code play=eyes(); to play=stars();
or play=scales(); and recompile.

Design file is stored in http://www.savefile.com/files/1885779

 6.2. References

Nexy-2 reference maual------------------------Digilent Inc.

PmodAMP1 reference maual version B------------------------Digilent Inc.

Embedded System Tools Reference Manual----------------------Xilinx

Getting started with EDK----------------------Xilinx

The C Book, on-line version----------------------Mike Banahan, Declan Brady, Mark Doran

 6.3. Acknowledgment of Contributions

Lin Ma contributes System specification, Music tune studding, PWM generator design,
VGA controller modification, Software developing, and System verification.

Qiran Zhou contributes Graphic algorithm coding, Software Debugging, PWM
parameter definition, System verification.

Thank Mengze Yuan for platform initializing.

Thank Meng Cai for first graphic algorithm coding.

Special thank Mr. Gruian & Mr. Andersson for time extension and guidance.

Page 14 of 14

