
EDA385 - Embedded Systems Design - Advanced Course
2008-10-15

Henrik Kjellberg, et05hk6
Carl Hakenäs, e04ch
Daniel Fritze, d03df
Stefan Frid, d04sfr

Abstract
This report is a part of the project course Design of Embedded Systems, Advanced Course. In the
course a clone of the video game Guitar Hero was created. The target platform was the Spartan 3E
based FPGA board Digilent Nexys2 running a Microblaze CPU. One objective with the design was
to make a general game platform and not a design limited to Guitar Hero. Focus has been on video
performance. This report discusses software and hardware in detail as well as performance results
and possible improvements. Design methodology and project plan is also discussed.

i

Contents
Abstract...i
Introduction..1
Hardware..2

General..2
MicroBlaze™..2
Interrupt Controller...4
RS232 Controller..4

SPI interfacing...4
The guitar control..5
General Purpose Input/Output..5
DMA Controller..5
VGA Controller ..5
Audio Controller...9

Software..10
Initialization..10
Game logic..10
Hardware management..10
Graphics..10
Tools..11

Development ..12
Problems...13

SPI-problems...13
FLASH-problems..13
VGA-problems..13

Contributions..14
Installing FPGA HERO on the Nexys2 board..14

Introduction
The general idea behind the project was to make a simplified version of the popular console/PC
music game Guitar Hero.

In the original version of the game, basic gameplay revolves around playing guitar notes in sync
with the music. On the screen, a scrolling guitar fretboard is shown, scrolling in 3D towards the
player. Color coded notes are placed on the fretboard. When the notes reach a certain line, the
player has to hold down the corresponding button(s) on the supplied guitar controller, and hit the
strum bar. If the note is not played correctly, a short "missed note" sample is played, and the guitar
channel is muted. Difficulty rises as note complexity and amount is increased.

Our game is vastly simplified compared to the original, but maintains the basic idea of hitting
animated notes using a guitar controller. We omitted nearly everything except main gameplay
(introduction, menus, options, career gameplay etc.). Some gameplay elements, such as whammy
bar and "Star Power" will initially be left out. Our graphics will be 2D, and without most of visual
flair of the original (including animated rock avatars, audience, fretboard etc.). The original version
of the game has two stereo channels for the music, one with only guitar, and one with the rest of the
instruments/vocals. Our version only features one channel of stereo audio, with audio separation
done between the two speakers. This eliminates the need for sound mixing.

Thes unit is based upon a Digilent Nexys 2 system design platform, containing a Xilinx Spartan 3E
FPGA, 16Mbytes of SDRAM and 16Mbytes of Flash ROM. The FPGA hosts a Microblaze™
microprocessor wich runs the game software. Besides the Microblaze™ the unit holds a custom
made bursted VGA controller with hardware sprites and a framebuffer, a DMA controller for
memory shoveling, a timer with a interrupt controller to generate periodical interrupts in the
microprocessor and a custom made audio controller.
A custom made guitar control is connected using pullups and regular button inputs.

The software is mainly interrupt driven. On a frequency of 2kHz the game is stepped forward, with
checking of inputs and updating of graphics and sound. The only thing done in the main loop is the
generation of the flame effect.

1/18

Hardware

General
Device utilization summary:

Selected Device : 3s1200efg320-5

 Number of Slices: 7177 out of 8672 82%
 Number of Slice Flip Flops: 6474 out of 17344 37%
 Number of 4 input LUTs: 9862 out of 17344 56%
 Number used as logic: 9345
 Number used as Shift registers: 261
 Number used as RAMs: 256
 Number of IOs: 73
 Number of bonded IOBs: 73 out of 250 29%
 IOB Flip Flops: 64
 Number of BRAMs: 25 out of 28 89%
 Number of MULT18X18SIOs: 4 out of 28 14%
 Number of GCLKs: 1 out of 24 4%
 Number of DCMs: 1 out of 8 12%

MicroBlaze™
The MicroBlaze™
embedded processor
soft core is a reduced
instruction set
computer (RISC)
optimized for
implementation in
Xilinx® Field
Programmable Gate
Arrays (FPGAs).
Figure 1-1 shows a
functional block
diagram of the
MicroBlaze core.

2/18

Overview
Generated on Thu Oct 16 17:42:08 2008
EDK Version 10.1.02
FPGA Family spartan3e
Device xc3s1200efg320-5
IP Instantiated 21
Processors 1
Busses 3

Timer
The timer used is a XPS Timer/Counter core
for the Processor Local Bus (see figure 1).
The timer is configured by the Microblaze™
through the PLB bus to send a interrupt signal
at 2KHz. The Interrupt signal is then
connected to a interrupt controller which
arranges all available interrupts by priority
order and forwards them to the Microblaze™.

3/18

Post Synthesis Device Utilization
Resource Type Used Available Percent

Slices 330 8672 3

Slice Flip Flops 368 17344 2

4 input LUTs 387 17344 2

IOs 213 NA NA

bonded IOBs 0 250 0

Interrupt Controller
The XPS Interrupt Controller
concentrates multiple interrupt inputs
from peripheral devices to a single
interrupt output to the system
processor. When a interrupt occurs, the
MicroBlaze™ processor asks the
interrupt controller what peripheral that
requested the interrupt and executes the
corresponding interrupt handler.
In current version the system only uses one interrupt, namely the timer interrupt, but the interrupt
handler is implemented for future expansions.

RS232 Controller
The XPS Universal Asynchronous
Receiver/Transmitter (UART) Lite Interface
is simply used for debug purposes.
By using the supplied drivers and Xilinx
custom made print-function xil_print(),
debug data were printed on the serial port
and displayed with the Microsoft
HyperTerminal.

SPI interfacing
The SPI protocol is a very simple way of connecting
peripherals to a micro controller. Two devices are
connected together with one being the master and one
being slave. The data is sent in full duplex, ie. one line for
master output and one line for slave output, the so called
MOSI and MISO (Master Out, Slave In and Master In,
Slave Out).

Amongst many other, Xilinx supply a core IP for a SPI-
module. This IP has a wide support for various
applications, such as FIFO-transfer queue, polled and
interrupt based operation and multiple masters and slaves
on the same SPI-bus.

The idea was to use SPI for communication between the guitar control and the FPGA. In the FPGA-
Hero there is 5 buttons on the guitar control, so the eight bits in the SPI shift register should be used
as on/off-flags where each bit represented one button. The three remaining bits could then be used
for expansion in form of a whammy-bar in case of extra time.
The FPGA was supposed to be the master and the guitar control was supposed to be the slave, based
on a AVR microprocessor.

4/18

Post Synthesis Device Utilization
Resource Type Used Available Percent

Slices 86 8672 0

Slice Flip Flops 123 17344 0

4 input LUTs 87 17344 0

IOs 208 NA NA

bonded IOBs 0 250 0

Post Synthesis Device Utilization
Resource Type Used Available Percent

Slices 116 8672 1

Slice Flip Flops 151 17344 0

4 input LUTs 141 17344 0

IOs 209 NA NA

bonded IOBs 0 250 0

Figure 2: Standard SPI Bus

The guitar control
The guitar ended up with four push buttons on the guitar neck and a toggle switch as the strum. All
switches were pulling to Vcc through a resistor and shorting to ground when pressed. The switches
were connected through flat wire to a small proto-board with the pull-up resistors and a connector
to the Pmod connector.

General Purpose Input/Output
The General Purpose Input/Output (GPIO)
core is used to connect input buttons to the
MicroBlaze™ through the PLB bus.
The GPIO is used in polled mode and
checked from the 2KHz interrupt to check
if the player presses any buttons on the
guitar control.

DMA Controller
The XPS Central DMA Controller provides
simple Direct Memory Access (DMA)
services to peripherals and memory devices
on the PLB. The controller transfers a
programmable quantity of data from a source
address to a destination address without
processor intervention.
It is used to transfer the framebuffer data from
the SDRAM to the VGA controller FIFO when triggered from the MicroBlaze™

VGA Controller
The VGA controller consists of three parts

- VGA signal generator, generates 640x480
60Hz signal

- Framebuffer, displays a portion of RAM
memory on screen

- Sprite generator, draws sprites using
hardware rendering

The signal generator uses two counters to generate the sync pulses needed for the VGA pulse
generation. The hcnt counter is the horizontal counter and vcnt is the vertical counter. When the
horizontal counter reaches a certain value the vertical counter is increased. Both counters are reset
when they reaches a certain value.
The horizontal counter is increased with the 50MHz system clock. Pulses and counter values are
given by the following:

5/18

Post Synthesis Device Utilization
Resource Type Used Available Percent

Slices 60 8672 0

Slice Flip Flops 92 17344 0

4 input LUTs 52 17344 0

IOs 303 NA NA

bonded IOBs 0 250 0

Post Synthesis Device Utilization
Resource Type Used Available Percent

Slices 585 8672 6

Slice Flip Flops 565 17344 3

4 input LUTs 1025 17344 5

IOs 392 NA NA

bonded IOBs 0 250 0

Post Synthesis Device Utilization
Resource Type Used Available Percent

Slices 3879 8672 44

Slice Flip Flops 2824 17344 16

4 input LUTs 5063 17344 29

IOs 216 NA NA

bonded IOBs 0 250 0

BRAMs 8 28 28

MULT18X18SIOs 1 28 3

- Horizontal max value: 1599
- Vertical max value: 520
- Hsync is set to zero when hcnt is below 190
- Vsync is set to zero when vcnt is below 1

Software decides the active region for the VGA signal. This is used to control the size of the
framebuffer and thereby also the amount of data needed to read from RAM. A register exists in the
output to reduce screen artifacts.

Framebuffer
The vga controller reads data from the FIFO when the current pixel is inside the active region. It is
not the VGA controls responsibility to assure that correct data exists in the FIFO. This is handled by
a software trigged DMA controller. The data read from the FIFO is 32bits wide which corresponds
to 4 pixels. To assure stable operation a register is located between the FIFO output and the actual
drawing logic.
The bottleneck for the framebuffer is the RAM where the framebuffer resides. According to the
Nexys2 reference manual the read cycle is 70ns and 16bits. The maximum bandwidth would then
be:

1/(70*10^-9) * 2bytes= 27.24 MB/s

With a FIFO as big as the framebuffer and infinite speed of the FIFO the maximum theoretical
resolution can be obtained by:
27.24 MB/s / 60s = 237677 bytes = 991x480
But the maximum usable resolution obtained the frame buffer is 420x480 bytes. Without the FIFO
the RAM would have had the same speed as the pixel clock, 25 Mb/s. Also no other operations
would be allowed to access the RAM during this operation.

6/18

Figure 3: VGA Controller overview

Sprites
The VGA controller enables hardware based rendering of sprites. Several sprites of any size can be
rendered to the screen simultaneous. Sprites are drawn 'on-the-fly' and are never rendered to the
framebuffer. Sprites are drawn above framebuffer pixels. The graphical sprite data is stored in a
BRAM inside the VGA controller called pixel data. This is a 8bits wide memory representing the
pixels in 8bit format, if all bits are zero the pixel is treated as transparent. All sprites have three
properties: location, size and pixel data offset.

• Location is the x&y screen coordinates of the sprite, these coordinates are in 640x480
resolution including all non-visible screen areas.

• Size determines a sprites width and height. These can be any number ranging from 0-255.
However behavior when a sprite is larger than the pixel data is undocumented.

• Pixeldata offset determines where in the pixel data buffer a sprite has its content. Pixeldata
address for a pixel is calculated using:

address = offset + width * y + x;

Where x and y are coordinates within the sprite. These properties are stored in forms of arrays
where each sprite has its own index. All properties can be changed during runtime via registers. A
detailed explanation of these registers can be found below.

Rendering
A sprite’s visibility is evaluated during creation of the VGA is signal. All sprites are evaluated
simultaneously for all pixels. The location is compared with the current pixel drawing position. If
the pixel is within the sprites boundaries the pixel data coordinates is calculated. Using these
coordinates and the pixel data offset a pixel data address is calculated.
Only one sprite can be drawn on one pixel, if several sprites exists on the same pixel only the sprite
with highest array index will be drawn. The sprites are evaluated on a 50MHz clock, to meet timing
requirements and BRAM specifications the procedure is pipelined in four stages.
The stages are:

1. Determine if a sprite should be drawn on this pixel if so calculate sprite coordinates .
2. Calculate sprite address using pixel data offset and above coordinates.
3. Set address to BRAM
4. Read from BRAM, draw pixel if it’s not transparent else draw framebuffer pixel.

The pipeline introduces a 4 pixel delay, this is compensated by having a counter that is 4 pixel
ahead of the horizontal counter.
All pixel properties are stored in arrays where each sprite has a unique index. Since all sprites are
evaluated simultaneous the number of if statement grows with the number of possible sprites. The
maximum number of sprites is determined by a constant in VHDL and cannot be changed during
runtime.
The current implementation uses 40 sprites and a sprite memory of 8Kb. With 40 sprites the
systems critical path is in pipeline stage 1. Lesser sprites will create a shorter path in stage 1. Each
sprite’s properties occupy the following bits as registers:

- Location 11x2 bits
- Size 8x2 bits
- BRAM offset 16 bits
- Total 54 bits

7/18

Sprite properties
Sprite properties can be access using the following input signals:

valid_sprite std_logic;
set_sprite_size std_logic;
set_sprite_offset std_logic
fill_sprite_mem std_logic;
sprite_index std_logic_vector(7 downto 0);
sprite_x std_logic_vector(10 downto 0);
sprite_y std_logic_vector(10 downto 0);
sprite_address std_logic_vector(15 downto 0);

Location of a sprite
valid_sprite = '1', sprite_index = sprite_number, sprite_x, sprite_y =
location.
Sprite size
set_sprite_size = '1', sprite_index = sprite_number, sprite_x, sprite_y =
size.
Sprite pixel data offset
set_sprite_offset = '1', sprite_index = sprite_number, sprite_address =
offset
Set pixel data
fill_sprite_mem = '1', sprite_address = address, sprite_x(7 downto 0)=RGB

The sprite properties can be changed anytime. A sprites location can change when its being drawn.
Doing this may result in artifacts.
Possible improvements
All elements of the location and size array needs to be accessed simultaneous, therefore they must
be implemented as registers. Since only one sprite can be visible at once only one pixel data offset
needs to be accessed. To save resources in terms of LUTs this property could be implemented as
distrusted or block RAM. This would save about 30% of RAM.
Both pipeline stage 1 and stage 2 requires a lot of logic to be evaluated during one clockcycle.
Additional pipeline stages would remove this limitation, for instance: the additions and
multiplication in stage two could be split into two stages.

8/18

Figure 4: Sprite pipeline

Audio Controller
Audio is stored in flash memory, PCM coded with 22.05kHz 8bits stereo. The audio controller
reads from a PLB connected FIFO and produces a PWM signal that corresponds to the PCM
sample. Data is being read out from the FIFO with the same speed as the sample frequency.

Figure 5: Audio Controller overview

The converter seen in fig 5 is built up by two counters. One counter that scales the clock frequency
and the other counter that produces the actual PWM signal.
The PWM period is the same as the sampling frequency. The PWM counter is ranging from 0 to
255 which are the same as the PCM resolution. If the PWM counter is below the current sample
value a ‘1’ is presented on the output else ‘0’. The PWM counter is updated when the scaling
counter reaches a certain value given by:

50000000 Hz / 22050 Hz / 256 = 8,86

When rounded to 9 the actual samplings frequency is 21.701kHz.

9/18

Software

Initialization
In the beginning of our program we set VGA controller parameters telling what resolution we are
using. After that the background picture is read from the flash memory and written to the frame
buffer. The sprites are then read from the flash and written to the sprite memory. Last of all the intro
is started.

Game logic
The purpose of the game logic is to determine if the player manages to hit buttons at the correct
time, shown on the monitor, and then adjust the sound accordingly. To do this we need to have
music, and data that tells when to hit the different notes. As mentioned before we have borrowed
this from the open source project Frets on fire. The timings of the notes were stored in midi files so
we had to write a converter in java. The converter takes a midi file as input and creates four c arrays
as output. Each of the arrays contains data telling at which time in ms that particular note should be
played. In our game we have four structs that contains: time arrays, number of notes the array
contains, the note that should be played next, the lowest note to be shown on screen.

Our program contains two parts, a infinite main loop and a interrupt that occurs with 2 kHz
frequency. All time critical parts of our program are handled by the interrupt. It contains of two
software parts that are executed in this order: handle input, draw column. The main loop is only
used for a flame effect that is not important to make the game work.

The handle_input method checks which buttons are pressed and compares them to the ones
supposed to be pressed. It also checks if a note has passed the last position it can be hit at. If the
player managed to hit a note the points increases. If he hits a note thats not supposed to be hit or if a
note falls to far down, the guitar sound stops and instead a fail sound is played.

The draw_column method is called four times, once for each note. This method calculates which
notes in the array that should currently be visible on screen and at what coordinates they should
appear. Then the notes are drawn on screen using the method draw_hw_sprite.

Hardware management
The 2 kHz interrupt also contains two hardware management parts. The first one is calling the
update_sound method, which makes sure that the sound buffer is filled at all time, by copying data
from the flash memory to the audio FIFO. The second one makes sure the VGA FIFO is filled all
time. This is done by initiating the DMA to copy a block data from the RAM memory and placing
them in the queue.

Graphics
We have two ways of displaying graphics on the screen. We can either do it with a frame buffer or
with sprites drawn in hardware. We use the frame buffer to draw background pictures and our flame
animation. The hardware sprites are used to draw the falling notes, the letters and numbers. The
reason that we don't do this in the frame buffer is that we only can update about one fifth of the
screen before the next frame is drawn. We would also have to use double buffering to prevent
flickering.

10/18

Tools
MIDI note reader
The game software uses a number of C arrays with time stamps at which notes should be played.
The amount of work needed to generate good note arrays for a song would be very large. Because
of this, we use note data from a open source Guitar Hero clone, Frets On Fire. In this game, note
data is stored in a MIDI file.

Much of the information contained in these MIDI files is not needed by us. Note sets for different
difficulty levels are included, as well as bass guitar information. Some other data, such as “Star
Power” markers, are also included.

We built a simple Java program that uses java.sound.midi classes to read and parse a MIDI file.
These classes provide us with many tools for filtering the data, such as only working with the guitar
track, and difficulty selection by choosing only notes from a certain octave.

When invoked, the program reads “notes.mid”, reads through the MIDI event information, filters
out unwanted events, converts the timing information of the events to real time, and writes the
result in a C struct format to the console. We do not read the BPM of the song from the MIDI file,
this has to be hard-coded in the Java source file.

Image converter
Our VGA controller uses 8 bits per pixel, 3 bits red/green and 2 bits blue. Since 3:3:2 RGB RAW is
no standard format, we had to build a simple image converter.
We built this application in Java, using java.awt libraries to load and process the image.
When invoked, the program opens an image specified in the source code and outputs this file as a
3:3:2 RGB RAW, suited to be displayed with our VGA controller.

Flash programmer
The flashprogramming tool is used to program the flashmemory over USB with a file. It requires
that ExPort is running in the background. The FPGA board must be running the default program or
another software capable of programming the FLASH using CFI over EPP. For runtime specific
operations run the program without parameters.

Audio merger
Combines two audio files to a single file with two channels put at alternating bytes.

11/18

Development
Since we had quite short time to develop the whole project we decided to work simultaneously on
both software and hardware. We started by working on game design, audio controller and inputs
using SPI. The game design was done by working on a frame buffer in DOS simulated by using
DOS-box. The input from the keyboard was also simulated in the same format as we would be
getting it later. We decided not to try to simulate the sound as it would be far to much trouble. The
sound controller was also close to completed by this time. After a few weeks we had our game
partially working on DOS.

After that we started to work on the VGA controller using a frame buffer. We managed to get it
working but after we tried our code on the frame buffer we realized that we wouldn't be able to
write as much as needed without flickering. To solve this problem we decided to use the frame
buffer for background pictures and effects, and used hardware sprites to handle the drawing of the
notes, digits and numbers.

On the hardware side FLASH and audio was first prioritized and the biggest question marks. This
because we realized that flash and audio was the least the documentation areas and also not many
other groups worked on this. After audio and flash was implemented the VGA controller was
developed The VGA controller got more and more advanced in order to meet our growing
performance requirements.

The development of the SPI interface ran into several problems, mainly caused by lack of
documentation. When time were running out we decided to skip the SPI interface and instead use
the simpler XPS GPIO core for the guitar control.

12/18

Problems

SPI-problems
Before finding a large library of example-codes for all of Xilinx's core IP's we struggled to
understand and decompose the supplied drivers. When we finally got the example codes we threw
away all our old SPI-code and tried the examples. When trying the example of a polled
implementation everything seamed to work fine, but when trying to connect the core to the outside
world and the prototype of the guitar control, nothing happened. When we finally solved the
problem, it turned out to be that in loop back mode (as used by the example code), the slave select-
bit didn't have to be set in order to transmit data. But when not in loop back mode, the transmission
is hold until the slave select-bit is set. When the SPI module in the FPGA finally was working, it
turned out that the guitar control didn't get all bits right and the returned value was very random.
Since time was running out, we decided to skip the SPI solution and instead use the simpler button-
handler IP, seen in the board's default program. The guitar control was modified to shorten the pins
in one of the Pmod expansion ports to ground when buttons were pressed and otherwise pulled up
to Vcc. The drawback of using the built in button-handler instead of a external microprocessor with
SPI is the limitations in expansions.

FLASH-problems
At first we tried to program the 16 MB flash memory from our program running on the FPGA. We
tried to program it using the built in XilFlash libraries but it failed. We also tried to program the
flash memory using a JTAG cable but with no success.

The default program on the FPGA board contains a FLASH selftest and code for accessing the
flash. By analyzing this code a tool was created using Digilent Port Communications API. With this
the flash memory could successfully be programed, however only half of the words could be used
the rest was corrupted. Later our supervisor discovered an error in the system generated by the
wizard, this solved our problem and we got a working flash memory.

Since we had our own customized tool that was suited for our needs we didn't bother to try the
XilFlash library or the JTAG.

VGA-problems
We had problems with artifacts with data on certain byte alignments. After inserting a register
between the FIFO and drawing logic the artifact disappeared. However the extra delay the register
caused introduced some bugs but these where taken care of.

13/18

Contributions
Hardware:
Mainly Carl and Henrik

Software:
Mainly Stefan and Daniel

Testing:
Everyone

Report:
Everyone

System Architecture:
Everyone

Installing FPGA HERO on the Nexys2 board

Hardware Configuration

1. Connect the PModAMP1 module into the top row of Pmod JD
2. Connect headphones/speakers to the left audio jack
3. Connect the guitar Pmod JB, make sure that the connection is aligned to the left
 (VCC and GND should be connected)

Software Configuration

1. Unzip the fpgahero9.zip
2. Start ExPort, run initialize the chain and turn on the board (default config must be running)
3. Execute fpgahero9/media/prog_audio.bat
4. Execute fpgahero9/media/prog_images.bat
5. Start Xilinx Platform Studio
6. Open fpgahero9/system.xmp
7. Execute Device Configuration -> Update Bitstream
8. In Export choose fpgahero9/implementation/download.bit
9. Disable the ROM by clicking it
10. Click Program Chain

14/18

	Abstract
	Introduction
	Hardware
	General
	MicroBlaze™
	Interrupt Controller
	RS232 Controller
	
SPI interfacing
	The guitar control
	General Purpose Input/Output
	DMA Controller
	VGA Controller
	Audio Controller

	Software
	Initialization
	Game logic
	Hardware management
	Graphics
	Tools

	Development
	Problems
	SPI-problems
	FLASH-problems
	VGA-problems

	Contributions
	Installing FPGA HERO on the Nexys2 board

