
Embedded Systems Design –
Advanced Course

Simple Image Analysis on a BMP file

Group 1:
Adis Bjelosevic
Mehmet Bozkurt
Orhan Mekic

Introduction

This project was carried out as a part of the course Embedded System Design-Advanced
Course. The goal of the project was to create a BMP decoder and perform some simple
image analysis operations on the displayed image, using the Virtex-II V2MB1000
Development Board as platform. This document describes the system functionality and
how the different parts of the system were implemented. The appendix contains a
complete source code listing.

System design

Overview

Above is an image of the system architecture. The heart of the system is the MicroBlaze
CPU (100 MHz) which combined with our software performs the main tasks of the
system.
One module built inside the FPGA is a 64 kbit block RAM (referred as BRAM in this
document), which is mainly used as video RAM (VRAM) and program memory. The
system basically reads a bitmap image on the UART and displays it on a VGA-monitor,
after it has stored the image in SDRAM. Switches are used to select the mode of
operation for the system. The modes are edge detection along the two coordinate axes.

CPU
MicroBlaze

VGA-ctrl.

DDR-ctrl

GP I/O
(Switches)

FPGA

SDRAM

32Mb
OPB

VGA screen

OPB

Figure 2.1 System architecture

UART

System functionality

Hardware & Peripherals

VGA-controller
Our VGA-controller is based on one supplied to us by our tutors. Originally it was a
monochrome 640x480 resolution controller. This controller occupied 640*480=307200
bits on BRAM and provided just two colors. In order for us to create an acceptable
solution we had to increase the number of colors used. We decided to go with 16 colors,
with a color lookup table, which require 4 bits for each pixel. Because of BRAM
limitations and our wish to keep the entire screen content in BRAM we changed the
resolution to 320x240. The VGA-controller still occupies 307200 bits in BRAM because
320*240*4=307200 bits.

Using CoreGen we generated a VRAM-block netlist to use with our solution. This
reduced the place-and-route time significantly. We also changed the data width from one
bit to four bits in our new VRAM core.

The VGA-controller continuously reads the content of the VRAM and displays it on the
screen. What ever is written to VRAM is shown and as long as the content doesn’t
change the image shown on the screen does not change. Values between 0 and 15 are
stored in the VRAM. These values represent indices to a color lookup table. Values from
the lookup table are directly put on the VGA-connectors. Each connector requires 3 bits,
3 for red, 3 for green and 3 for blue. Below is the color lookup table used in our VGA-
controller.

constant COL_LUT: colorlut_type := (
 "000 000 000", -- 0 black
 "001 000 000", -- 1 dark red
 "000 001 000", -- 2 dark green
 "000 000 001", -- 3 dark blue
 "001 001 000", -- 4
 "001 000 001", -- 5
 "000 001 001", -- 6
 "001 001 001", -- 7
 "011 011 011", -- 8 grey
 "011 000 000", -- 9 red
 "000 011 000", -- 10 green
 "000 000 011", -- 11 blue
 "011 011 000", -- 12
 "011 000 011", -- 13
 "000 011 011", -- 14
 "111 111 111" -- 15 white
);

Here is an example for the red color lookup (most significant bits are used) where do is a
signal (0-15):

VGA_red <= "000" when pixel_en = '0' else
COL_LUT(CONV_INTEGER(do))(0 to 2);

Because of the screen size being 640x480 we had to read every pixel, in VRAM, three
times to get the desired resolution of 320x240.

DDR-controller
The DDR-controller was provided to us by our tutors. It is needed because the onboard
32 mega bytes SDRAM do not support the 100 MHz clock. This design uses the existing
opb_ddr IP and a custom clock module to generate the required clock signals. It produces
a 66 MHz clock signals from the 100 MHz signals.

UARTLite
The UART handles communication to and from the board and is connected to the OPB-
bus. It communicates at 19200 kbit/s and is set as the standard-in and standard-out. In our
design the UART is used for receiving the image file and printing text to the user.

GPIO
The GPIO is connected to the OPB and provides access to the switches available on the
board. Its bandwidth is set to 8 bits and the platform generates primitives for reading the
switches.

The software

In our solution the software part contains the main logic. The program performs three
main tasks before the image is displayed.

First the program receives a bitmap file over the UART; the UART is set as standard-in
and standard-out. If the file is not a bitmap the program displays an error message to the
user and exits. If the file is a bitmap the program decodes the image and stores it in
SDRAM. The SDRAM is accessed through a pointer. The original file is always kept in
SDRAM. Because of the bitmap (bmp) file format we implemented one method for
reading a whole word at a time in addition to a method that just reads one byte at a time.

When the program reads one word it has to perform some additional bit-shifting because
the most significant byte is read first. We also had to implement a method for skipping
bytes because all bytes in the bitmap were not important for our purposes. Because of
size restrictions we never use functions like printf or getchar instead we use
xil_printf and UART functions provided to us by the Xilinx Platform Studio for
communication to and from the UART.

Upon receiving the image it is stored upside down in SDRAM. This is due to the way the
image is stored in the bmp file. Thus, the program has to reorder the bytes stored in order
to display the image correctly on the screen. This is performed in the same memory
location as where the image is already stored. Thus the flipping operation does not
increase the memory usage in SDRAM.

After the image has been rotated the program enters a loop. In every iteration, the
program reads the switches on the board and depending on mode (switch value) it
performs one of three different operations. In the first mode the program simply displays
the original image. In the second mode the program does edged detection along the x-axis
and displays the image. Finally, in the third mode the program does edge detection along
the y-axis and displays the image.

Image content is displayed when data is written to the VRAM. The VRAM is accessed
through a pointer in the program. The method memcpy is used because it instantly copies
bytes from any memory location, to VRAM. No delays are noticed and there is never any
“painting” seen on the screen, e.g. pixels are not drawn line by line, instead the image is
displayed instantly.

The edge detection we use in our solution is based on the differences between individual
pixels along one of the two axes. The processed pixels are stored directly after the
original image in SDRAM.

Conclusion & Discussion

The following section discusses our projects development and change during its course.
This section does not provide a discussion on the implementation itself, because it’s
pretty straight forward and is easily understood by reading the previous sections in this
report and viewing the appendix.

This project can hardly be called a success if one looks at the initial project proposal and
project description. The initial proposal was to create a JPEG-decoder in hard/software.
We were not able to fulfil our goals due to a number of reasons. First of all when we
selected our project we were not aware of the difficulties it would present, and this was
because we did not have enough knowledge regarding the technology we wanted to
implement and we did not have enough knowledge about the platform. We thought that
JPEG-decoding software would be easy to find and fit on the platform, which turned out
to be a really challenging task. Other factors that affected our project were all the time we
spent on trying to get the most basic parts of the system to work. A few examples of such

problems were; the decoder source not fitting in the memory, a VGA-controller not
synthesizing for our platform, the file system module provided in the platform did not
work as expected despite the fact that we followed the instructions in the documentation.
If the FPGA we used got to warm it produced unexpected results. These are just a few
examples and although described here very shortly they consumed many working hours.
As the weeks went on and we ran in to problems in each step forward, we realised that
we had to change our goals and go with a different solution for us not to miss the project
deadline. This would of course not be acceptable in a real life situation but instead of
quitting and doing nothing we decided to at least try to do something presentable. This
change did not mean that all our problems were solved but the ones that we now were
faced with were easier to overcome.

All in all we succeeded in creating an application that works and that uses a number of
hardware cores together with software. The system performs quite well and no delays are
really experienced except when initially transmitting the image to the board due to
communication latency. Image analysis and the action of displaying the image are very
fast.

Experiences gained from this project are quite a few. We learned that hardware/software
co design can be quite challenging and puts higher requirements on work method,
problem solving and debugging. From the beginning one needs to have a greater
knowledge of the system you intend to implement and the platform it going to run on.
Often we ran into unexpected problems and things that ought to work did not. For
example, when we added the GPIO for the switch support nothing worked. But after
removed our changes and redid them it worked. This taught us not to give up on an idea
to quickly. This project also taught us not to put to much faith into development tools and
their output.

Appendix

C Source

#include "stdio.h"
#include "stdlib.h"
#include "xparameters.h"
#include "xgpio_l.h"
#include "xio.h"
#include "xuartlite_l.h"
#include "xbasic_types.h"

typedef unsigned char byte;
typedef unsigned short word;
typedef unsigned long dword; #define NORMAL 0

#define DER_X 1
#define DER_Y 2

void swap(byte *a, byte *b){

 byte tmp = *a;
 *a = *b;
 *b = tmp;
}

void delay(int c)
{
 int b= 10;
 int a=2;
 int i;
 for(i=0;i < c;++i) b+=a;
}

byte readOneByte(void)
{
 return (byte)XUartLite_RecvByte(STDIN_BASEADDRESS) ;
}

int getWord()
{
 int w = 0;
 int tmp = 0;
 w = readOneByte();
 tmp = readOneByte();
 tmp = tmp << 8;
 w += tmp;
 return w;
}

 void skipBytes(int num)
{
 int i=0;
 for(;i<num;++i) readOneByte();
}

void edgeDetect_x(byte* img, byte* vga,int width, i nt height, int n)
{
 int i;
 int j;
 int start = n;
 int diff;
 for(i=0;i<height;i++)
 for(j=0;j<width;j++) {
 diff = img[j+320*i] - img[j+1+320*i];
 img[n++]=diff;
 }
 memcpy(vga, &img[start], n-start);
}

void edgeDetect_y(byte* img, byte* vga,int width, i nt height, int n)
{
 int i;
 int j;
 int start = n;
 int diff;
 for(i=0;i<height-1;i++)
 for(j=0;j<width;j++) {

 diff = img[j+320*i] - img[j+320*(i+1)];
 img[n++]=diff;
 }
 memcpy(vga, &img[start], n-start);
}

 int _wait(loop_count)
int loop_count;
{
 int sum, data;
 sum = 0;
 for (data = 0; data < loop_count; data++) {
 sum = sum + data;
 }
}

int main()
{
 byte t;
 int i=0;
 int j=0;
 int loop = 1;
 int sleepCount = 0;
 byte b;
 byte* data;
 int width = 0;
 int height = 0;
 int num_colors = 0;
 int pixOffset =0 ;
 int n =0;
 int header_size;
 int pixel_size;
 int file_size;
 unsigned char* vga_ctrl = (unsigned
char*)XPAR_MYVGACTRL_BASEADDR;
 unsigned char* sdram = (unsigned char*)XPAR_DDRCTR L_BASEADDR;
 XGpio_mSetDataDirection(XPAR_SWITCHES_BASEADDR, 0x FF);

 xil_printf("Running\n\r");
 if((char)readOneByte() !='B' || (char)readOneByt e() !='M') //
0 1
 {
 xil_printf("Not a bitmap file.\n\r");
 exit(1);
 }

 file_size = getWord(); // 2 3

 skipBytes(6); // 4 5 6 7 8 9
 pixOffset = getWord(); // 10 11
 skipBytes(2); // 12 13
 header_size = getWord(); // 14 15
 skipBytes(2); // 16 17
 width = getWord(); //18 19
 skipBytes(2); // 20 21
 height= getWord(); // 22 23
 skipBytes(4); // 24 25 26 27

 num_colors = readOneByte(); // 28
 skipBytes(5); //29 30 31 32 33
 pixel_size = getWord(); // 34 35
 skipBytes(50); xil_printf("file size: %d\n\r", f ile_size);
 xil_printf("offset: %d\n\r", pixOffset);
 xil_printf("header: %d\n\r", header_size);
 xil_printf("pixel data size: %d\n\r", pixel_size);
 for(i=0;i<height;i++) {
 for(j=0;j<width;j++) {
 b = readOneByte();
 sdram[n++] = b >> 4;
 j++;
 sdram[n++] = b;
 }
 }

 xil_printf("Displaying...\n\r");
 for(i=0;i<height/2;++i)
 for(j=0;j<width;++j)
 swap(&sdram[j+i*320], &sdram[j+320*(height-1-i)]);

 while(1){
 t = (XGpio_mGetDataReg(XPAR_SWITCHES_BASEADDR));
 t = (t >> 6);
 if(t == NORMAL){
 memcpy(vga_ctrl, sdram, n);
 xil_printf("Normal display, mode %d\n\r", t);
 }
 if(t == DER_X){
 edgeDetect_x(sdram, vga_ctrl,width, height,n);

 xil_printf("Edge detect x, mode %d\n\r", t);
 }
 if(t == DER_Y){
 edgeDetect_y(sdram, vga_ctrl,width, height,n);

 xil_printf("Edge detect y, mode %d\n\r", t);
 }
 readOneByte();
 }
}

VGA-contoller (VHDL)

library ieee;
use ieee.std_logic_1164.all;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
--- --------------------

-- entity
--- --------------------

entity OPB_VGACtrl is
 generic
 (
 C_BASEADDR : std_logic_vector(0 to 31) := X"FFFFFFFF";
 C_HIGHADDR : std_logic_vector(0 to 31) := X"00000000"
);
 port
 (
 --Required OPB bus ports, do not add to or dele te
 OPB_ABus : in std_logic_vector(0 to 31);
 OPB_BE : in std_logic_vector(0 to 3);
 OPB_Clk : in std_logic;
 OPB_DBus : in std_logic_vector(0 to 31);
 OPB_RNW : in std_logic;
 OPB_Rst : in std_logic;
 OPB_select : in std_logic;
 OPB_seqAddr : in std_logic;
 Sln_DBus : out std_logic_vector(0 to 31);
 Sln_errAck : out std_logic;
 Sln_retry : out std_logic;
 Sln_toutSup : out std_logic;
 Sln_xferAck : out std_logic;
 -- VGA stuff
 VGA_hsync : out std_logic;
 VGA_vsync : out std_logic;
 VGA_red : out std_logic_vector(0 to 2);
 VGA_green : out std_logic_vector(0 to 2);
 VGA_blue : out std_logic_vector(0 to 2)

);
end entity OPB_VGACtrl; --USER-- change entity name

--- --------------------

-- architecture
--- --------------------

architecture imp of OPB_VGACtrl is --USER-- change entity name
 -- the vga clk should be 25.175 MHz, but if we di vide OPB_Clk by 4 we
get
 -- 25 MHz. This will do.
 -- One line
 -- 8 pixels front porch
 -- 96 pixels horizontal sync
 -- 40 pixels back porch
 -- 8 pixels left border
 -- 640 pixels video
 -- 8 pixels right border
 -- ---
 -- 800 pixels total per line

 -- One field(frame)
 -- 2 lines front porch
 -- 2 lines vertical sync
 -- 25 lines back porch
 -- 8 lines top border

 -- 480 lines video
 -- 8 lines bottom border
 -- ---
 -- 525 lines total per field
--- --------------------

-- timing Constants
--- --------------------

-- Horizontal timing constants
constant H_FRONTPORCH: integer := 8;
constant H_SYNC: integer := 96;
constant H_BACKPORCH: integer := 40;
constant H_LBORDER: integer := 8;
constant H_PIXEL: integer := 640;
constant H_RBORDER: integer := 8;
constant H_PERIOD: integer := 800;
-- Vertical timing constants
constant V_FRONTPORCH: integer := 2;
constant V_SYNC: integer := 2;
constant V_BACKPORCH: integer := 25;
constant V_TBORDER: integer := 8;
constant V_PIXEL: integer := 480;
constant V_BBORDER: integer := 8;
constant V_PERIOD: integer := 525;
-- Horizontal timing positions
constant H_FRONTPORCH_START: integer := 0;
-- 0
constant H_SYNC_START: integer := H_FRONTPO RCH_START +
H_FRONTPORCH; -- 8
constant H_BACKPORCH_START: integer := H_SYNC_ST ART + H_SYNC;
-- 104
constant H_LBORDER_START: integer := H_BACKPOR CH_START +
H_BACKPORCH; -- 144
constant H_PIXEL_START: integer := H_LBORDER _START + H_LBORDER;
-- 152
constant H_RBORDER_START: integer := H_PIXEL_S TART + H_PIXEL;
-- 792
-- Vertical timing positions
constant V_FRONTPORCH_START: integer := 0;
-- 0
constant V_SYNC_START: integer := V_FRONTPO RCH_START +
V_FRONTPORCH; -- 2
constant V_BACKPORCH_START: integer := V_SYNC_ST ART + V_SYNC;
-- 4
constant V_TBORDER_START: integer := V_BACKPOR CH_START +
V_BACKPORCH; -- 29
constant V_PIXEL_START: integer := V_TBORDER _START + V_TBORDER;
-- 37
constant V_BBORDER_START: integer := V_PIXEL_S TART + V_PIXEL;
-- 517

------------- Begin Cut here for COMPONENT Declarat ion ------ COMP_TAG
component vram
 port (
 addra: IN std_logic_VECTOR(16 downto 0);

 addrb: IN std_logic_VECTOR(16 downto 0);
 clka: IN std_logic;
 clkb: IN std_logic;
 dinb: IN std_logic_VECTOR(3 downto 0);
 douta: OUT std_logic_VECTOR(3 downto 0);
 web: IN std_logic);
end component;

-- XST black box declaration
attribute box_type : string;
attribute box_type of vram: component is "black_box ";
--- -------------------
type colorlut_type is array (0 to 15) of std_logic_ vector(0 to 8);

constant COL_LUT: colorlut_type := (
 "000000000", -- 0 black
 "001000000", -- 1 dark red
 "000001000", -- 2 dark green
 "000000001", -- 3 dark blue
 "001001000", -- 4
 "001000001", -- 5
 "000001001", -- 6
 "001001001", -- 7
 "011011011", -- 8 grey
 "011000000", -- 9 red
 "000011000", -- 10 green
 "000000011", -- 11 blue
 "011011000", -- 12
 "011000011", -- 13
 "000011011", -- 14
 "111111111" -- 15 white
);

 signal cnt : std_logic_vector(0 to 1); -- divide OPB_Clk by 4
 -- out signals from the flip-floops
 signal x_reg : std_logic_vector(0 to 9); -- x po sition, 0..799
 signal y_reg : std_logic_vector(0 to 8); -- y po sition, 0..524
 -- in signals to the flip-floops
 signal x_next : std_logic_vector(0 to 9); -- x p osition, 0..799
 signal y_next : std_logic_vector(0 to 8); -- y p osition, 0..524
 -- pixel_clk is high the opb_clk befor a new pixe l is moved to the
vga output
 -- it may not be used as a clock (would introduce logic in the clk
path, i.e.
 -- bad design!)
 -- pixel_clk works as an enable for all registers
 signal pixel_clk : std_logic;
 signal h_pixel_en : std_logic; -- 152 <= x < 792
 signal v_pixel_en : std_logic; -- 37 <= y < 517
 signal pixel_en : std_logic;
 signal pixel_en_reg : std_logic;

 signal we : std_logic;
 signal di : std_logic_VECTOR(3 downto 0);
 signal do : std_logic_VECTOR(3 downto 0);
 signal r_addr : std_logic_vector(16 downto 0);
 signal w_addr : std_logic_vector(16 downto 0);

 signal cs : std_logic;

 signal hold: std_logic;
 signal new_row: std_logic;
begin
------------- Begin Cut here for INSTANTIATION Temp late ----- INST_TAG
VGA_memory : vram
 port map (
 addra => r_addr,
 addrb => w_addr,
 clka => OPB_clk,
 clkb => OPB_clk,
 dinb => di,
 douta => do,
 web => we);
-- INST_TAG_END ------ End INSTANTIATION Template - -----------

 pixel_clk <= '1' when cnt = "00" else '0';
 h_pixel_en <= '1' when x_next >= H_PIXEL_START an d x_next <
H_RBORDER_START else '0';
 v_pixel_en <= '1' when y_next >= V_PIXEL_START an d y_next <
V_BBORDER_START else '0';
 pixel_en <= h_pixel_en and v_pixel_en;

 -- update pixel_en, cnt, x and y registers
 process (OPB_Clk, OPB_Rst)
 begin -- process
 if OPB_Rst = '1' then
 x_reg <= (others => '0');
 y_reg <= (others => '0');
 cnt <= (others => '0');
 --hold <= '0';
 --new_row <= '0';
 elsif OPB_Clk'event and OPB_Clk = '1' then
 cnt <= cnt + 1;
 if pixel_clk = '1' then
 pixel_en_reg <= pixel_en;
 x_reg <= x_next;
 y_reg <= y_next;
 end if;
 end if;
 end process;

 -- produce x_next and y_next
 process (x_reg, y_reg)
 variable x : std_logic_vector(0 to 9); -- x po sition, 0..799
 variable y : std_logic_vector(0 to 8); -- y po sition, 0..524
 begin
 x := x_reg;
 y := y_reg;
 x := x + 1;
 if x = H_PERIOD then
 x := "0000000000";
 y := y + 1;
 if y = V_PERIOD then

 y := "000000000";
 end if;
 end if;
 x_next <= x;
 y_next <= y;
 end process;
--- --------------------
------ sync signals ---
 -- hsync
 process (OPB_Clk)
 begin -- process
 if OPB_Clk'event and OPB_Clk = '1' then
 -- if OPB_Rst = '1' then
 -- vga_hsync <= '0';
 -- else
 if x_next >= H_SYNC_START and x_next < H_BACK PORCH_START then
 vga_hsync <= '0';
 else
 vga_hsync <= '1';
 end if;
 -- end if;
 end if;
 end process;

 -- vsync
 process (OPB_Clk)
 begin -- process
 if OPB_Clk'event and OPB_Clk = '1' then
 -- if OPB_Rst = '1' then
 --vga_vsync <= '0';
 -- else
 if y_next >= V_SYNC_START and y_next < V_BAC KPORCH_START then
 vga_vsync <= '0';
 else
 vga_vsync <= '1';
 end if;
 --end if;
 end if;
 end process;

--- --------------------
- pixel output ---
VGA_red <= "000" when pixel_en = '0' else COL_LUT (CONV_INTEGER(do))(0
to 2);
VGA_green <= "000" when pixel_en = '0' else COL_LUT (CONV_INTEGER(do))(3
to 5);
VGA_blue <= "000" when pixel_en = '0' else COL_LUT (CONV_INTEGER(do))(6
to 8);

 process (OPB_Clk)
 begin -- process
 if OPB_Clk'event and OPB_Clk = '1' then -- ris ing clock edge
 if OPB_Rst = '1' then
 hold <= '0';
 r_addr <= (others => '0');
 new_row <= '0';

 else
 if pixel_clk = '1' then
 if (x_next = "0000000000" and y_next(8) = '1') then
 r_addr <= r_addr - "101000000";
 end if;
 if pixel_en ='1' then
 if hold = '1' then
 r_addr <= r_addr + 1;
 hold <= '0';
 else
 hold <= '1';
 end if;
 --if x_next = H_RBORDER_START - 1 then
 --if new_row = '0' then
 --r_addr <= r_addr - "101000000";
 --new_row <= '1';
 --hold <= '0';
 --else
 --new_row <= '0';
 --end if;
 --end if;

 elsif v_pixel_en = '0' then
 r_addr <= (others => '0');
 --new_row <= '0';
 --hold <= '0';
 end if;
 end if;
 end if;
 end if;
 end process;

--- --------------------
---- OPB slave ---
cs <= '1' when OPB_ABus >= C_BASEADDR and OPB_ABus <= C_HIGHADDR and
OPB_select = '1' else '0';
we <= '1' when cs = '1' and OPB_RNW = '0' else '0';
di <= OPB_DBus(28 to 31);
w_addr <= OPB_ABus(15 to 31);

 Sln_DBus <= (others => '0');
 Sln_errAck <= '0';
 Sln_retry <= '0';
 Sln_toutSup <= '0';

 process (OPB_Clk)
 begin -- process
 if OPB_Clk'event and OPB_Clk = '1' then -- ris ing clock edge
 if we = '1' then
 Sln_xferAck <= '1';
 else
 Sln_xferAck <= '0';
 end if;
 end if;
 end process;
end architecture imp;

