
© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-1

PVG (EDA260) - lecture 3:

Konfigurationshantering

Lars Bendix

Department of Computer Science

Lund Institute of Technology

Sweden

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-2

What is SCM?

•! Carlo’s lemon marmalade

•! Citroën C3 fires

Software Configuration Management:

is the discipline of organising, controlling and

managing the development and evolution of

software systems. (IEEE, ISO,...)

The goal is to maximize productivity by

minimizing mistakes. (Babich)

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-3

Building on sand?

Software Configuration Management

Req. Coding QA Testing Design

CM is a CMM level 2 key process area

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-4

SCM for XP development

Support for:

•! handling source code

•! collective ownership

•! simple integration

•! painless refactoring

•! ease of testing

•! effortless releasing

•! handling document(ation)

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-5

Goals

•! to be able to return to well-defined states

•! to have an overview of the development history

•! to give a model for the system architecture

•! to show what depends on what

•! to ensure the consistent generation of a system

•! to save space

•! to save time

An ounce of [history] is worth a pound of analysis.

 Babich

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-6

How does a programmer spend his time?

•! 50 % interacting with other team members

•! 30 % working alone (pair-programming??)

•! 20 % non-productive activities

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-7

Common heritage

•! sharing things

•! memory/history

•! communication

•! co-ordination

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-8

Problems of co-ordination

Shared data

Double maintenance

Simultaneous update

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-9

Co-ordination

Working in isolation:
 • local dynamicity

 • global stability

 • problem:

- multiple maintenance

Working in group:
 • global dynamicity

 • problems:

 - shared data

 - simultaneous update

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-10

Immutability principle

Principle: components are immutable

copy

add

edit

data

base

local

working

copies

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-11

Working

update

commit

Project repository Private/pair workspace

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-12

Copy/merge work model

Can we lock the things we want to work on? NO!

So we copy everything to our workspace...

...and everyone else copy to their workspaces...

!! double maintenance !!
 o

Fortunately ”update” has a built-in merge facility:
•! We first merge from the repository into the workspace

•! Then we commit (copy/add) to the repository

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-13

•! Overall CVS (and CM) was a HUGE help for the project.

•! The version history was a real life saver.

•! CVS made it possible for 12 people to work on the same

 code at the same time.

•! CVS rules!

•! It would have been impossible to merge different

 people’s work without it.

•! CVS sucks!

•! Branching made releasing much easier.

•! We tagged the releases – it served it’s purpose.

Quotes from XP’ers

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-14

So how is CM used?

•! update-commit

•! merge – merge – merge

•! no versioning, diff, tag, …

•! change log only to identify people

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-15

mkdir WS; export CVSROOT=….

WS
CVSROOT

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-16

cvs checkout BST

WS
CVSROOT

BST

project

BST

project

workspace creation

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-17

cvs status; cvs commit; cvs update;

WS
CVSROOT

BST

project

BST

project

BST

project

WS
CVSROOT

BST

project

BST

project

workspace usage

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-18

Long transactions I

Lars

Checkout

Ulf

Checkout

Repository

workspace creation

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-19

Long transactions II

Repository

Ulf Lars

update

commit commit

workspace usage (termination)

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-20

Extreme programming

SCM-related practices:

•! collective ownership (developer)

•! continuous integration (developer)

•! refactoring (coding)

•! small releases (business)

•! planning game (business/developer)

•! test-driven development (developer)

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-21

Collective code ownership

Goal: to spread the responsibility for the code to the team

How/why:

•! from individual (pair) to team ownership

•! reinforces code review (and readability)

•! enables refactoring

Requires:

•! team spirit

•! frequent integration

SCM dangers:

•! huge merge conflicts

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-22

Integrate continually I

Goal: to reduce the impact of adding new features

How/why:

•! ”download” & ”upload” integration

•! run tests; update (merge); re-run tests; commit

•! all components must be in repository

•! integration machine/responsibility/how often?

•! keeps everyone in synchronisation

•! keeps the project releasable all the time

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-23

Integrate continually II

Requires:

•! collective source code repository

•! short tasks

SCM dangers:

•! huge merge conflicts

•! false positives

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-24

Unfortunately :-(

Repository

Ulf Lars

commit commit

NO strict long transactions - so...

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-25

Goal: to find the code’s optimal design

How:

•! before & after a task, think about refactoring

•! changes the structure, but not the behaviour

•! break out code; remove duplications; …

Requires:

•! collective code ownership

•! coding standards

SCM dangers:

•! big-bang refactorings

Refactor mercilessly

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-26

Release regularly

Goal: to return the customer’s investment often

Why/when/how:

•! two-way feedback

•! at the end of each iteration (daily?)

•! clean machine principle

•! automating and optimising the release

Requires:

•! continuous integration

SCM dangers:

•! a happy customer ;-)

•! a broken release :-(

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-27

Play the Planning Game

Goal: to schedule the most important work

Why/how:

•! to maximize the value of features produced

•! divides planning responsibilities (what/how)

•! developers estimate user stories

•! developers split stories up into tasks

Requires:

•! active customer

•! mutual respect

SCM dangers:

•! sloppy estimates and work break-down

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-28

XP process

1. Always start with all of the “released” code.

2. Write tests that correspond to your tasks.

3. Run all unit tests.

4. Fix any unit tests that are broken.

5. When all unit tests run, your local changes become

 release candidates.

6. Release candidate changes are integrated with the

 currently released code.

7. If the released code was modified, compare the

 differences and integrate them with your changes.

8. Rerun tests, fix, rerun tests, fix, rerun ….

9. When the unit tests run, release all of your code, making

 a new official version.

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-29

Diffing and merging

1.1 1.2 2.1 2.2 3.1

1.2.1.1

Visualisation of differences:

 • diff

Merging of branches:

 • merge

 • always control manually that things went well

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-30

Log book

Gives the history for a component:

•! who

•! what

•! when

•! why

However, forget about the knowledge - as long

as you can find the right person!

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-31

Code management tools

1. Identify local changes.

2. Differentiate between local changes

 and released code.

3. Identify who released a change and

 when they released it.

4. Merge changes and released code.

5. Revert to previously released code.

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP, HT2010

F3-32

Troubleshooting

Slow merges
•! “release” frequently

•! don’t worry - be happy

Lost changes
•! incorrectly merging

•! intentional reversion

•! wont stay lost for long

http://cs.lth.se/EDAN10/

