
Contents of Lecture 9

Depth First Search for DCE (Dead Code Elimination)

Liveness Analysis for DCE

SSA-based DCE

Control Dependencies

Control Flow Graph Simplification

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 1 / 21

js@cs.lth.se


Two Simple Forms of Dead Code Elimination

#include <stdio.h>

int main(void)

{

int a;

a = 1;

a = a + 2;

goto L;

printf("a = %d\n", a);

L:

return 0;

}

DFS

Liveness Analysis

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 2 / 21

js@cs.lth.se


Depth First Search and Dominance Analysis

DFS from the start vertex visits all basic blocks reachable from the
start vertex, obviously.

All other vertices are removed before performing dominance analysis.

For some minor modifications of the control flow graph an existing
dominator tree can be updated.

In general, it’s easier and probably faster to recompute the dominator
tree from scratch.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 3 / 21

js@cs.lth.se


Limitations of DCE Based on Liveness Analysis

for (i = 0; i < n; ++i)

a = a + i * i;

return;

The variable a is live in the loop but will not affect program output.

The loop should be deleted but it cannot be using DCE based on
liveness.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 4 / 21

js@cs.lth.se


DCE Based on Observable Output

The correct approach to DCE is to delete all code which cannot affect
the observable output.

In each function, some instructions are marked as live, e.g. calls to
printf, and are put in a worklist.

Then, recursively, all instructions which provide input to a live
instruction is marked as live and put on the worklist.

Eventually no new instructions are marked as live and all other
instructions can be deleted (but read more about branches first!).

Instructions initially marked live include: function calls, memory
writes, and return instructions, and in vcc additionally the put and
get instruction.

Why did it take more than 30 years to discover form of DCE?

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 5 / 21

js@cs.lth.se


SSA and DCE

The main reason why it was not invented earlier is that the other
approaches usually were sufficient.

With SSA Form, however, it’s more likely there will be lots of
instructions, in particular φ-functions, which remain after other
optimizations.

For example, operator strength reduction explicitly copies and
modifies the strongly connected components in the SSA Graph of
induction variables, which can leave a lot of work to DCE.

The article in Transactions on Programming Languages and Systems
(TOPLAS) which presented SSA Form also presented the DCE
algorithm we will study.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 6 / 21

js@cs.lth.se


Conditional Branches

s

u

x

y

w

e

v

Assume there is a live instruction in vertex x .

The DCE algorithm must assure execution
actually reaches x exactly as the original
program would.

Therefore some conditional branch
instructions (and the instructions providing
their input etc) which branch to x must also
be marked live.

In this example the branch in u controls
whether x certainly will be executed.

For vertex w , the vertices which can control
that w will be executed are u, v , and w .

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 7 / 21

js@cs.lth.se


Reverse Control Flow Graph and Post Dominance

s

u

x

y

w

e

v

The reverse control flow graph is the control
flow graph with the direction of each edge
reversed, where s and e have switched roles,
and is written RCFG.

A vertex w postdominates v if every path
from v to the exit vertex e contains w , and
we write it w � v .

A vertex w strictly postdominates v if
w � v and w 6= v , and we write it w � v .

Thus we have w � x and w � y .

Post dominance can be computed as
dominance in the RCFG.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 8 / 21

js@cs.lth.se


Control Dependence

s

u

x

y

w

e

v

A non-null path is a path with at least one
edge: w is a null path, while (w ,w) and
(u, x ,w ,w ,w , e) are not.

A vertex v is control dependent on vertex u,
written u δc v if

1 there exists a non-null path from u to v
and v postdominates every vertex on the
path after u, and

2 v does not strictly postdominate u.

The set of vertices which are control
dependent on u is denoted CD(u) and the
set of vertices a vertex v is control
dependent on is denoted CD−1(v).

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 9 / 21

js@cs.lth.se


Lemma 2.34, page 99

Lemma

Assume v ∈ succ(u) and there is a path p = (v0 = v , v1, ..., vk = w) from
v to w. Then w � v ⇔ w � vi for every vertex vi on p.

Proof.

Let us show ⇒ first. Assume therefore in contradiction that there exists
some 0 < i < k such that w �/ vi . Thus there exists a path from vi to e
which does not include w . Then there is a path from v to vi to e which
avoids w which is a contradiction. Hence w � vi .
Since v is on the path, ⇐ follows directly.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 10 / 21

js@cs.lth.se


Dominance Frontiers

Recall that the dominance frontier of a vertex u is the set of vertices
v such that u dominates a predecessor of v but does not strictly
dominate v :

DF (u)
def
= {v |(∃p ∈ pred(v)) u � p ∧ u �/ v}.

With Lemma 2.34 we can simplify the definition of control
dependence and show that it is equivalent to dominance frontiers in
the reverse control flow graph.

First the simplified definition: a vertex v is control dependent on
u ∈ CD−1(v) if v postdominates a successor of u but does not
strictly postdominate u:

CD−1(v)
def
= { u | (∃s ∈ succ(u)) ∧ v � s ∧ v �/ u}

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 11 / 21

js@cs.lth.se


Equivalence of CD in CFG and DF in RCFG

Theorem

u δc v in CFG ⇔ u ∈ DF (v) in RCFG.

Proof.

This follows from Lemma 2.34, since u δc v in CFG means v
postdominates a successor of u but does not strictly postdominate u,
which in RCFG means v dominates a predecessor of u but v does not
strictly dominate u, ie u ∈ DF (v).

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 12 / 21

js@cs.lth.se


Example CFG and RCFG

s

u

x

y

w

e

v

e

w

y

x v

u

s

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 13 / 21

js@cs.lth.se


The DCE Algorithm

procedure eliminate dead code (G)
for each statement s do

if (s is prelive) {
live (s)← true
add s to worklist

} else
live (s)← false

worklist← prelive
while (worklist 6= ∅) do {

take s from worklist
v ← vertex (s)
live (v)← true
for each source operand ω of s do {

t← def (ω)
if (not live (t)) {

live (t)← true
add t to worklist

}
}
for each vertex v ∈ CD−1(vertex(s)) do {

t← multiway branch of v
if (not live (t)) {

live (t)← true
add t to worklist

}
}

}
for each statement s do

if (not live (s) and s /∈ {label, branch})
delete s from vertex (S)

simplify (G)
endJonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 14 / 21

js@cs.lth.se


Simplifying the CFG after DCE

procedure simplify (G)
live (e)← true
modified ← false
for each vertex u ∈ G do {

if (not live (u))
continue

for each v ∈ succ (u) do {
if (live (v))

continue
w ← ipdom (v) /* idom in RCFG */
while (not live (w))

w ← ipdom (w)
replace (u, v) with (u,w)
update the branch in u to its new target w
update φ-functions in w if necessary
modified ← true

}
}
if (modified) {

delete vertices from G which now have become unreachable
update dominator tree DT

}
end

Green denotes live vertices

0 a0 ← x

1 a0 6= y?

2

3a1 ← z

4

5

6

7
a2 ← φ(a1, a0, a0)
print(a2)

8

9

10

11

12

13

14

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 15 / 21

js@cs.lth.se


Processing 0

procedure simplify (G)
live (e)← true
modified ← false
for each vertex u ∈ G do {

if (not live (u))
continue

for each v ∈ succ (u) do {
if (live (v))

continue
w ← ipdom (v) /* idom in RCFG */
while (not live (w))

w ← ipdom (w)
replace (u, v) with (u,w)
update the branch in u to its new target w
update φ-functions in w if necessary
modified ← true

}
}
if (modified) {

delete vertices from G which now have become unreachable
update dominator tree DT

}
end

0 a0 ← x

1 a0 6= y?

2

3a1 ← z

4

5

6

7
a2 ← φ(a1, a0, a0)
print(a2)

8

9

10

11

12

13

14

Only successor is live.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 16 / 21

js@cs.lth.se


Processing 1: Edge (1, 2)

procedure simplify (G)
live (e)← true
modified ← false
for each vertex u ∈ G do {

if (not live (u))
continue

for each v ∈ succ (u) do {
if (live (v))

continue
w ← ipdom (v) /* idom in RCFG */
while (not live (w))

w ← ipdom (w)
replace (u, v) with (u,w)
update the branch in u to its new target w
update φ-functions in w if necessary
modified ← true

}
}
if (modified) {

delete vertices from G which now have become unreachable
update dominator tree DT

}
end

0 a0 ← x

1 a0 6= y?

2

3a1 ← z

4

5

6

7
a2 ← φ(a1, a0, a0)
print(a2)

8

9

10

11

12

13

14

2 is dead. Nearest live is 3.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 17 / 21

js@cs.lth.se


Processing 1: Edge (1, 2)

procedure simplify (G)
live (e)← true
modified ← false
for each vertex u ∈ G do {

if (not live (u))
continue

for each v ∈ succ (u) do {
if (live (v))

continue
w ← ipdom (v) /* idom in RCFG */
while (not live (w))

w ← ipdom (w)
replace (u, v) with (u,w)
update the branch in u to its new target w
update φ-functions in w if necessary
modified ← true

}
}
if (modified) {

delete vertices from G which now have become unreachable
update dominator tree DT

}
end

0 a0 ← x

1 a0 6= y?

2

3a1 ← z

4

5

6

7
a2 ← φ(a1, a0, a0)
print(a2)

8

9

10

11

12

13

14

2 is dead. Nearest live is 3.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 18 / 21

js@cs.lth.se


Processing 1: Edge (1, 9)

procedure simplify (G)
live (e)← true
modified ← false
for each vertex u ∈ G do {

if (not live (u))
continue

for each v ∈ succ (u) do {
if (live (v))

continue
w ← ipdom (v) /* idom in RCFG */
while (not live (w))

w ← ipdom (w)
replace (u, v) with (u,w)
update the branch in u to its new target w
update φ-functions in w if necessary
modified ← true

}
}
if (modified) {

delete vertices from G which now have become unreachable
update dominator tree DT

}
end

0 a0 ← x

1 a0 6= y?

2

3a1 ← z

4

5

6

7
a2 ← φ(a1, a0, a0)
print(a2)

8

9

10

11

12

13

14

9 is dead. Nearest live is 7.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 19 / 21

js@cs.lth.se


Processing 1: Edge (1, 9)

procedure simplify (G)
live (e)← true
modified ← false
for each vertex u ∈ G do {

if (not live (u))
continue

for each v ∈ succ (u) do {
if (live (v))

continue
w ← ipdom (v) /* idom in RCFG */
while (not live (w))

w ← ipdom (w)
replace (u, v) with (u,w)
update the branch in u to its new target w
update φ-functions in w if necessary
modified ← true

}
}
if (modified) {

delete vertices from G which now have become unreachable
update dominator tree DT

}
end

0 a0 ← x

1 a0 6= y?

2

3a1 ← z

4

5

6

7
a2 ← φ(a1, a0, a0)
print(a2)

8

9

10

11

12

13

14

Must fix φ(a) in 7.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 20 / 21

js@cs.lth.se


Result of Processing 3

procedure simplify (G)
live (e)← true
modified ← false
for each vertex u ∈ G do {

if (not live (u))
continue

for each v ∈ succ (u) do {
if (live (v))

continue
w ← ipdom (v) /* idom in RCFG */
while (not live (w))

w ← ipdom (w)
replace (u, v) with (u,w)
update the branch in u to its new target w
update φ-functions in w if necessary
modified ← true

}
}
if (modified) {

delete vertices from G which now have become unreachable
update dominator tree DT

}
end

0 a0 ← x

1 a0 6= y?

2

3a1 ← z

4

5

6

7
a2 ← φ(a1, a0, a0)
print(a2)

8

9

10

11

12

13

14

Later remove one (3, 7)!

Keep only live vertices.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 21 / 21

js@cs.lth.se

