Contents of Lecture 9

@ Depth First Search for DCE (Dead Code Elimination)
@ Liveness Analysis for DCE

@ SSA-based DCE

@ Control Dependencies

o

Control Flow Graph Simplification

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 1/21


js@cs.lth.se

Two Simple Forms of Dead Code Elimination

#include <stdio.h>

int main(void)

{

int a;

a=1;

a=a+ 2;

goto L;

printf("a = %d\n", a);
L:

return O;
}

e DFS

@ Liveness Analysis

Jonas Skeppstedt (js@cs.lth.se)

Lecture 9

2016

2 /21


js@cs.lth.se

Depth First Search and Dominance Analysis

@ DFS from the start vertex visits all basic blocks reachable from the
start vertex, obviously.

@ All other vertices are removed before performing dominance analysis.

@ For some minor modifications of the control flow graph an existing
dominator tree can be updated.

@ In general, it's easier and probably faster to recompute the dominator
tree from scratch.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 3/21


js@cs.lth.se

Limitations of DCE Based on Liveness Analysis

for (i = 0; i < n; ++i)
a=a+ 1 x 1;
return;

@ The variable a is live in the loop but will not affect program output.

@ The loop should be deleted but it cannot be using DCE based on
liveness.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 4 /21


js@cs.lth.se

DCE Based on Observable Output

@ The correct approach to DCE is to delete all code which cannot affect
the observable output.

@ In each function, some instructions are marked as live, e.g. calls to
printf, and are put in a worklist.

@ Then, recursively, all instructions which provide input to a live
instruction is marked as live and put on the worklist.

@ Eventually no new instructions are marked as live and all other
instructions can be deleted (but read more about branches first!).

@ Instructions initially marked live include: function calls, memory
writes, and return instructions, and in vcc additionally the put and
get instruction.

@ Why did it take more than 30 years to discover form of DCE?

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 5/ 21


js@cs.lth.se

SSA and DCE

@ The main reason why it was not invented earlier is that the other
approaches usually were sufficient.

@ With SSA Form, however, it's more likely there will be lots of
instructions, in particular ¢-functions, which remain after other
optimizations.

@ For example, operator strength reduction explicitly copies and
modifies the strongly connected components in the SSA Graph of
induction variables, which can leave a lot of work to DCE.

@ The article in Transactions on Programming Languages and Systems
(TOPLAS) which presented SSA Form also presented the DCE
algorithm we will study.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 6 /21


js@cs.lth.se

Conditional Branches

Assume there is a live instruction in vertex x.

The DCE algorithm must assure execution
actually reaches x exactly as the original
program would.

Therefore some conditional branch
instructions (and the instructions providing
their input etc) which branch to x must also
be marked live.

In this example the branch in u controls
whether x certainly will be executed.

For vertex w, the vertices which can control
that w will be executed are u, v, and w.

Jonas Skeppstedt (js@cs.lth.se)

Lecture 9 2016 7/ 21


js@cs.lth.se

Reverse Control Flow Graph and Post Dominance

@ The reverse control flow graph is the control
flow graph with the direction of each edge

reversed, where s and e have switched roles,
and is written RCFG.

@ A vertex w postdominates v if every path
from v to the exit vertex e contains w, and
we write it w < v.

@ A vertex w strictly postdominates v if
w < vand w # v, and we write it w < v.

@ Thuswe have w < x and w < .

@ Post dominance can be computed as
dominance in the RCFG.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 8 /21


js@cs.lth.se

Control Dependence

Jonas Skeppstedt (js@cs.lth.se)

@ A non-null path is a path with at least one
edge: w is a null path, while (w, w) and
(u,x, w,w,w,e) are not.

@ A vertex v is control dependent on vertex u,
written u 0¢ v if

© there exists a non-null path from v to v
and v postdominates every vertex on the
path after u, and

@ v does not strictly postdominate wu.

@ The set of vertices which are control
dependent on v is denoted CD(u) and the
set of vertices a vertex v is control
dependent on is denoted CD~1(v).

Lecture 9 2016 9 /21


js@cs.lth.se

Lemma 2.34, page 99

Assume v € succ(u) and there is a path p = (vo = v, vi, ..., vk = w) from
v tow. Then w < v & w <L v, for every vertex vi on p.

Let us show = first. Assume therefore in contradiction that there exists
some 0 < i < k such that w < v;. Thus there exists a path from v; to e
which does not include w. Then there is a path from v to v; to e which
avoids w which is a contradiction. Hence w < v;.

Since v is on the path, < follows directly. []

4

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 10 / 21


js@cs.lth.se

Dominance Frontiers

@ Recall that the dominance frontier of a vertex u is the set of vertices
v such that v dominates a predecessor of v but does not strictly
dominate v:

def

DF(u) = {v|(3p € pred(v)) u>pAu » v}
@ With Lemma 2.34 we can simplify the definition of control

dependence and show that it is equivalent to dominance frontiers in
the reverse control flow graph.

@ First the simplified definition: a vertex v is control dependent on
uc CD7(v) if v postdominates a successor of u but does not
strictly postdominate u:

CDYv) € {u|(@sesucc(u) Av<s A v £ u)

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 11 /21


js@cs.lth.se

Equivalence of CD in CFG and DF in RCFG

udc vin CFG < u e DF(v) in RCFG.

This follows from Lemma 2.34, since u 0¢ v in CFG means v
postdominates a successor of u but does not strictly postdominate u,
which in RCFG means v dominates a predecessor of u but v does not

strictly dominate u, ie u € DF(v). ]

w

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 12 /21


js@cs.lth.se

Example CFG and RCFG

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 13 /21


js@cs.lth.se

The DCE Algorithm

procedure eliminate_dead_code (G)
for each statement s do
if (s is prelive) {
live(s) < true
add s to worklist
} else
live(s) < false
worklist <— prelive
while (worklist # () do {
take s from worklist
v < vertex(s)
live(v) < true
for each source operand w of s do {
t < def(w)
if (not live(t)) {
live(t) < true
add t to worklist
}
}
for each vertex v € CD ™ !(vertex(s)) do {
t < multiway branch of v
if (not live(t)) {
live(t) < true
add t to worklist

}
}

for each statement s do

if (not live(s) and s & {label, branch})
delete s from vertex(S)
simplify (G)

Jonas Skeppstedt (js@cs.lth.se) Lecture 9

2016

14 / 21


js@cs.lth.se

Simplifying the CFG after DCE

procedure simplify (G)
live (e) < true
modified <— false
for each vertex u € G do {
if (not live(u))
continue
for each v € succ (u) do {
if (live(v))
continue
w <— ipdom(v) /* idom in RCFG */
while (not live (w))
w <— ipdom (w)
replace (u, v) with (u, w)
update the branch in u to its new target w
update ¢-functions in w if necessary
modified <— true

}

if (modified) {
delete vertices from G which now have become unreachable
update dominator tree DT

end

@ Green denotes live vertices

ap <— ¢(ala a0, a0)

print(as)

2016

15 / 21

Jonas Skeppstedt (js@cs.lth.se) Lecture 9


js@cs.lth.se

Processing 0

procedure simplify (G)
live (e) <— true
modified < false
for each vertex u € G do {
if (not live(u))
continue
for each v € succ (u) do {
if (live(v))
continue
w <— ipdom(v) /* idom in RCFG */
while (not live (w))
w <— ipdom (w)
replace (u, v) with (u, w)
update the branch in u to its new target w
update ¢-functions in w if necessary
modified <— true
}
}
if (modified) {
delete vertices from G which now have become unreachable
update dominator tree DT

az < ¢(a1, ag, ao)
print(ap)

end

@ Only successor is live.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 16 / 21


js@cs.lth.se

Processing 1: Edge (1,2)

procedure simplify (G)
live(e) < true
modified < false
for each vertex u € G do {
if (not live(u))
continue
for each v € succ (u) do {
if (live(v))
continue
w <— ipdom(v) /* idom in RCFG */
while (not live (w))
w <— ipdom (w)
replace (u, v) with (u, w)
update the branch in u to its new target w
update ¢-functions in w if necessary
modified <— true
}
}
if (modified) {
delete vertices from G which now have become unreachable
update dominator tree DT

a <— ¢(al7 a0, 30)
print(az)

end

@ 2 is dead. Nearest live is 3.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 17 / 21


js@cs.lth.se

Processing 1: Edge (1,2)

procedure simplify (G)
live(e) < true
modified < false
for each vertex u € G do {
if (not live(u))
continue
for each v € succ (u) do {
if (live(v))
continue
w <— ipdom(v) /* idom in RCFG */
while (not live (w))
w <— ipdom (w)
replace (u, v) with (u, w)
update the branch in u to its new target w
update ¢-functions in w if necessary
modified <— true
}
}
if (modified) {
delete vertices from G which now have become unreachable
update dominator tree DT

a <— ¢(al7 a0, 30)
print(az)

end

@ 2 is dead. Nearest live is 3.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 18 / 21


js@cs.lth.se

Processing 1: Edge (1,9)

procedure simplify (G)
live(e) < true
modified < false
for each vertex u € G do {
if (not live(u))
continue
for each v € succ (u) do {
if (live(v))
continue
w <— ipdom(v) /* idom in RCFG */
while (not live (w))
w <— ipdom (w)
replace (u, v) with (u, w)
update the branch in u to its new target w
update ¢-functions in w if necessary
modified <— true
}
}
if (modified) {
delete vertices from G which now have become unreachable
update dominator tree DT

a <— ¢(al7 a0, 30)
print(az)

end

@ 9 is dead. Nearest live is 7.

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 19 /21


js@cs.lth.se

Processing 1: Edge (1,9)

procedure simplify (G) e ag # y?
live (e) < true
modified < false
for each vertex u € G do {
if (not live(u))
continue

for each v € succ (u) do {
if (live (v)) a2

continue

w <— ipdom(v) /* idom in RCFG */

while (not /ive (w)) e e
w <— ipdom (w)

replace (u, v) with (u, w)

update the branch in u to its new target w
update ¢-functions in w if necessary
modified <— true
}
¥
if (modified) {
delete vertices from G which now have become unreachable
update dominator tree DT

. e Must fix ¢(a) in 7.

az <+ ¢(a1, ao, o)
print(ap)

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2016 20 / 21


js@cs.lth.se

Result of Processing 3

procedure simplify (G)
live(e) < true
modified < false
for each vertex u € G do {
if (not live(u))
continue
for each v € succ (u) do {
if (live(v))
continue
w <— ipdom(v) /* idom in RCFG */
while (not live (w))
w <— ipdom (w)
replace (u, v) with (u, w)
update the branch in u to its new target w
update ¢-functions in w if necessary
modified <— true
}
}
if (modified) {
delete vertices from G which now have become unreachable
update dominator tree DT

end

(&) @@
[N

a ap <— ¢(al7aOaaO)

print(az)

@ Later remove one (3,7)!

@ Keep only live vertices.

2016 21 /21

Jonas Skeppstedt (js@cs.lth.se) Lecture 9


js@cs.lth.se

