Contents of Lecture 7

@ What can PRE achieve?
@ Partial Redundancy Elimination History
@ Key ideas in SSAPRE from SGlI

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2016 1/21

js@cs.lth.se

Purpose of Partial Redundancy Elimination

@ Recall that Partial Redundancy Elimination, or PRE, can eliminate
both full and partial redundancies.

@ Full redundancies: when the expression is available from all predecessor
basic blocks.

@ Partial redundancies: when the expression is only available from some
but not all predecessor basic blocks.

@ Partial redundancies also covers loops, i.e. PRE can move code out
from loops.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2016 2 /21

js@cs.lth.se

Partial Redundancy Elimination History

@ PRE was invented by Morel and Renvoise in 1979.

@ Then Fred Chow in his PhD thesis at Stanford from 1983 (with John
Hennessy as supervisor) improved it.

@ In 1992 Knoop et al. published a version of PRE which is optimal in
the sense of minimizing register pressure. They called their algorithm
Lazy Code Motion.

@ In 1999 Kennedy and Chow and others at SGI published the SSA
formulation of Lazy Code Motion and called it SSAPRE.

@ We will first study a simpler version of it and then note that there
exists an efficient variant of SSAPRE which is much faster.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2016 3/21

js@cs.lth.se

Limitations of Value Numbering

0 ao + bg

1ag + by

./ \
2 dl] < X 4

N e

ax < ¢(a1, ao)

a> + bg

Jonas Skeppstedt (js@cs.lth.se)

@ Both hash-based and global
value numbering can optimize
the full redundancy in vertex 1.

@ None of them can optimize the
partial redundancy in vertex 3.

Lecture 7

js@cs.lth.se

The Key ldea of SSAPRE

@ We create ®-functions for the

0[ho < a0 + b hypothetical variable h.
e After SSAPRE, ®-functions
1{hy < ag + bo become normal ¢-functions and
— < they are really the same
o| a1 X 4 (different notation to distinguish
ho < L 7 between them only).
h3\% ®(hy, h1) @ By inserting the expression a+ b
3| ap + ¢(a1,a0) at ®-operands with the value L
az + bo ("bottom”), the partial

redundancy in vertex 3 becomes
a full redundancy and can be
eliminated.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2016 5/ 21

js@cs.lth.se

Overview of SSAPRE: V expression a + b do

@ Insert ®-functions.

@ Perform SSA-renaming for the variable h and all other variables
(again).

e Compute downsafety, i.e. where the expression is anticipated.

@ Compute can be avalil, i.e. where the expression can be available,
either because the expression is there or it can replace a | -operand.

@ Compute later, i.e. if can be lazy and insert the expression further
down in the control flow graph.

@ Perform finalizel, i.e. modify the code.

@ Perform finalize2, i.e. clean up various things.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2016 6 /21

js@cs.lth.se

Insertion of ®-functions

@ Recall that in SSAPRE every
expression assigns to a

ol @2=x hypothetical variable h.
b=y @ Where should we then insert
) 4 3 h\ ; ®-functions for h?
Cat © In the iterated dominance

\ / frontiers of all evaluations of
the expression, i.e. assignment

© In the iterated dominance
frontiers of all assignments to
operands in the expression —
since they mean h + L

2016 7 /21

Lecture 7

Jonas Skeppstedt (js@cs.lth.se)

js@cs.lth.se

lterated Dominance Frontiers of Evaluations of a + b

O d—X
b=y
v ~N
1 3lh«a+b

Jonas Skeppstedt (js@cs.lth.se)

@ We have already computed the
dominance frontiers of each
vertex.

@ We thus simply have to collect
the vertices which contain such
an evaluation.

Lecture 7 2016

8 / 21

js@cs.lth.se

lterated Dominance Frontiers of h +— |

@ Although we can collect all vertices
with assignments to a or b, and find

of 2=x the iterated dominance frontiers of
b=y these, there is a simpler way.
h=a+b @ Every vertex for which we will insert a
/ N\ ®-function due to an h + L must
L Slac-x+y contain a ¢-function to any of the
N\, / variables in the expression, i.e. ¢(a) or
h < ®(h, h) o(b).
1 2+ ¢(a,a) .
he atb @ So we simply look for ¢(a) and ¢(b),

and insert ®(h) in the same vertex.

@ Recall that ¢-functions are parallel
copy statements.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2016 9/ 21

js@cs.lth.se

Anticipated Expressions

@ An expression is anticipated at a

point p in the control flow graph if it
0 Zix Is certain it will be evaluated with all
" ;);+ b operands having the same value on all
— N paths from p.
1 U3+ x+y @ At the end of vertex 0, a+ b is not
N ~ anticipated since a might be assigned
h < ®(h, h) a new value in vertex 4.
2| a<+ ¢(a,a) @ At the end of vertices 1 and 4 the
h<a+b expression is anticipated due to the
evaluation in vertex 2 which certainly
3 h<a+b will be evaluated.
@ The word "evaluated” here means
"executed”.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2016 10 / 21

js@cs.lth.se

The Main Rule of the Game of PRE

ol 3= X
b=y
h=a-+b
/ \

1 (g +— x

N

2| h<+ d(h,L)

/\

4 Olh < a4+ b
\ /
5 h < ®(h, h)

No matter what, PRE may never
transform a function so it will execute
additional instructions due to PRE.

Should the L in vertex 2 be replaced
with h < a+ b?

No, it's not safe to insert the
expression since the expression is not
anticipated by the ®-function.

The path (0,7,2,3,4,5) would execute
a + b at the end of vertex 7 (for the
d-operand) without any purpose.

Actually, a ®-operand is regarded as
belonging to the predecessor vertex.

Jonas Skeppstedt (js@cs.lth.se)

Lecture 7 2016 11 / 21

js@cs.lth.se

Occurrences

@ There are three main types of so called occurrences of an expression:

O A real occurrence, i.e. the expression a + b,
© A o-function occurrence, and
© A d-operand occurrence.

@ Note that ®-operands are placed in the predecessor basic block.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2016 12 / 21

js@cs.lth.se

Attributes of ®-functions

d—X
b=y
h=a-+b
S \

1 (g +— x

N

2| h<+ d(h,L)

0

/\

4 Olh < a4+ b
\ /
5 h < ®(h, h)

Each d-function has a number of
boolean attributes:

e downsafe or ds

o can_be available or cba
o later

o will be available or wba

If a ®-function is downsafe, it's OK to

replace a L operand with the
expression.

We will soon see how downsafe is
computed.

A ®-operand has the boolean attribute
has_real_use which is true if the
value comes from a real occurrence.

Jonas Skeppstedt (js@cs.lth.se)

Lecture 7 2016 13 /21

js@cs.lth.se

dyg — X
0 Y @ Renaming traverses the dominator tree
ho = ag -+ bo and links uses with definitions of h
4 < variables.
1 [las < x @ At a d-function occurrence, a new
/ version of h is always created.
5| a1+ #(ag, a>) @ At a d-operand occurrence it is noted
hy < ®(hg, L) if the value comes from a real
occurrence, in which case
3 has real use is set to true.
@ At a real occurrence, a new version of
/ \ h is created if the top of stacks of a,
4 Olh3 « a1 + bo b, and h don't have the same versions.
\ / @ Both real and ®-function occurrences
5 hy < ®(hy, h3) are pushed on the rename stack of h.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2016 14 / 21

js@cs.lth.se

Initialization of Downsafe

hg = ap + bg @ Recall that a ®-function is downsafe if
4 N all paths from it evaluate a 4+ b (with
1 Maz < x the same variable versions).
\ / @ Thus, if there is a path from a
5| a1 #(ag, a>) ®-function to the exit vertex that

®-function is not downsafe unless the
expression was evaluated.

I
[

hi < Cb(ho,J_) ds

3 @ When renaming comes to the exit
vertex, it checks the top of the stack
/ \ of h.
4] : o
Olhs < a1 + bo @ If the top is a d-function, it is marked

N with ds = 0.

5 h2 — (D(hl, h3) ds

I
o

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2016 15 / 21

js@cs.lth.se

Computing Downsafety

0 dg = X
b():y
ho = ag + bg
/ N
1 (lay + x

/

o a1 < &(ao, a2)
hl <— (I)(h07J_) settods =0

3
YN
4 6h3%31—|—b0

N

5 h2 — (D(hl, h3) ds

I
o

After the initialization of downsafety
during rename, the downsafety is
computed for all ®-functions.

What should be done?

A ®-function with ds = 0 should tell
other ®-functions that also they are
not downsafe!

A ®-function with ds = 0 and with a
®-operand that is defined by a
®-function and for which

has real use = 0, should reset its
downsafety and continue the recursion.

In this example both ®-functions have
ds = 0.

Jonas Skeppstedt (js@cs.lth.se)

Lecture 7 2016 16 / 21

js@cs.lth.se

Computing Downsafety

procedure reset downsafe (x)

if (has real use(x) or def(x) is not a ®)
return

f < def(x)

if (not down safe(f))
return

down safe(f) < false

for each operand w of f do
reset downsafe (w)

procedure downsafety
for each f € F do
if (not down safe(f))
for each operand w of f do
reset downsafe (w)

Jonas Skeppstedt (js@cs.lth.se) Lecture 7

2016

17 / 21

js@cs.lth.se

Compute Can Be Available

procedure compute can be avail
for each f € F in the program do
can be avail(f) < true
for each f € F in the program do
if (not down safe(f)
and can_be avail(f)
and 3 an operand of f thatis 1)
reset can be avail(f)
end

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2016 18 / 21

js@cs.lth.se

Reset Can Be Available

procedure reset can be avail(g)
can be avail(g) < false
for each f € F with operand w with g =def(w) do
if (not has real use(w)
and not downsafe(f)
and can be avail(f))
reset can be avail(f)
end

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2016 19 / 21

js@cs.lth.se

Computing Later

procedure reset later(g)
later (g) < false
for each f € F with operand w with g =def(w) do
if (later(f))
reset later(f)
end N

procedure compute later
for each f € F do
later (f) < can be avail (f)
foreach f € Fdo =~
if (later(f) and
3 an operand w of f such that def(w) # L and has real use(w))
reset later(f) -
end N

procedure will be avail
compute can be avail
compute later
end N

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2016 20 / 21

js@cs.lth.se

Finalizel

procedure finalizel (g)
let £ < the current expression
for each redundancy class x of E do
avail def[x] = L
for each occurrence v of E in preorder DT traversal order do
x < class (v)
if (¢ is a ® occurrence) {
if (will be avail (v))
avail def[x] =
} else if (v is a real occurrence) {
if (avail def[x] is L or avail def[x] does not dominate %))
reload (v)) <false B
avail def[x] = ¢
Yelse{
reload (vy) <+true
def (1) <—avail def[x]

ks
} else {

/* 1 is a ® operand occurrence. */
let ¥ be the ® in the successor vertex of this operand
if (will be avail(f)) {
if (¢ satisfies insert) {
insert E at the end of the vertex containing 7
def (1)) < inserted occurrence
} else
def(v) <—avail def[x]

end

Jonas Skeppstedt (js@cs.lth.se) Lecture 7

2016

21 / 21

js@cs.lth.se

