
Contents of Lecture 5

Constant Folding
Earlier Constant Propagation Algorithms
Constant Propagation with Conditional Branches

Jonas Skeppstedt Lecture 5 2016 1 / 30



Constant Folding

#define KB (1024)
#define MB (KB * KB)

char buffer[8 * MB]

double f(void)
{

double a = 1.0/3.0;
static double b = 1.0/3.0;
double pi = 4 * atan(1);

}

C/C++ compilers are required to
perform a simple form of constant
propagation called constant folding.
Floating point expressions must be
evaluated as if the rounding mode is
taken into account (which can be set
at runtime).
In static initializers, the default
rounding mode may be used.
Many compilers exploit the C rule that
the identifiers of the standard library
functions are reserved — we know
π = 4× atan(1)

Jonas Skeppstedt Lecture 5 2016 2 / 30



Constant Propagation with Iterative Dataflow Analysis

a = 1;
b = 2;
if (a < b)

c = 3;
else

c = 4;
put(c);

Invented Gary Kildall 1973.
Every variable can be either

Undef
Constant
Non-constant

Iterative dataflow analysis is performed to
determine whether a variable is constant and
in that case which constant.
All branches (i.e. paths in a function) are
assumed to be executable.
Since c cannot be both 3 and 4 it’s assumed
to be nonconstant.

Jonas Skeppstedt Lecture 5 2016 3 / 30



Constant Propagation with Conditional Branches

a = 1;
b = 2;
if (a < b)

c1 = 3;
else

c2 = 4;
c3 = phi(c1, c2);
put(c3);

Based on SSA Form.
Invented at IBM Research and published
1991.
Recall Kildall’s algorithm assumed every
branch was executable.
This algorithm assumes that nothing is
executable except the start vertex.
The function is interpreted and the constant
expressions are propagated.
The interpretation proceeds until no new
knowledge about constants can be found.

Jonas Skeppstedt Lecture 5 2016 4 / 30



Key Idea with φ-functions

a = 1;
b = 2;
if (a < b)

c1 = 3;
else

c2 = 4;
c3 = phi(c1, c2);
put(c3);

Thanks to SSA Form, one statement and
variable is analyzed at a time.
At a φ-function, if any operand is
nonconstant the result is nonconstant, and if
any two constants have different values the
result also is nonconstant.
However, operands corresponding to
branches which we don’t think will be
executed can be ignored for the moment.
While interpreting the program we may later
realize that the branch in fact might be
executed and then the φ-function will be
re-evaluated.
We can ignore c2 and let c3 be 3.

Jonas Skeppstedt Lecture 5 2016 5 / 30



Result from Two φ-operands

x y x ∧ y

nonconst − nonconst

− nonconst nonconst

undef undef undef

undef m ∈ Z m

m ∈ Z undef m

m ∈ Z n ∈ Z, n 6= m nonconst

m ∈ Z n ∈ Z, n = m m

Jonas Skeppstedt Lecture 5 2016 6 / 30



Interpreting Unconditional Branches

a = 1;
b = 2;
goto L;
/* ... */
L:

In the vcc compiler, an unconditional branch is
called a branch-always and has mnemonic BA.
The name branch-always comes from the SPARC
instruction.
A branch-always should simply tell the interpreter
that the target basic block should be interpreted in
the future.
Actually we don’t have a list of basic blocks waiting
for interpretation but rather a list of edges.

Jonas Skeppstedt Lecture 5 2016 7 / 30



Interpreting Conditional Branches 1(2)

label U
mov 1,a
mov 2,b
bgt a,b,V
ba W

When the branch condition can be evaluated
only one of the successors should be put on
the list of edges to be interpreted.
In this case it is the edge (u,w) that is put
on the list.

Jonas Skeppstedt Lecture 5 2016 8 / 30



Interpreting Conditional Branches 2(2)

label U
mov x,a
mov 2,b
bgt a,b,V
ba W

Assume x is nonconstant.
Both edges (u, v) and (u,w) are put on the
list.

Jonas Skeppstedt Lecture 5 2016 9 / 30



Uses of a Variable on SSA Form

Every variable has a list of instructions (three-address statements) in
which it is used.
This list is called the uselist of a variable and some compilers
maintain it while others don’t.
With it, algorithms can be somewhat simpler but they obviously need
some memory.
For example SGI’s compiler doesn’t use it, while lmpcc and vcc do.
When we have determined that the value of a variable has been
lowered from Undef or Constant we must re-evaluate all instructions in
which the variable is used.

Jonas Skeppstedt Lecture 5 2016 10 / 30



Two Worklists are Maintained during Interpretation

The edge-worklist of new edges to interpret.
The ssa-worklist of uses which need to be re-evaluated.
The algorithm can take an object from the lists in any order and
perform interpretation. The result will always be the same.
The algorithm terminates when both lists are empty.
The statements are modified after the interpretation is complete.

Jonas Skeppstedt Lecture 5 2016 11 / 30



Visiting a Basic Block

Only the first time a basic block is processed are all its statements
interpreted.
On subsequent processing of v due to an edge (u, v) only the
φ-functions in v must be re-evaluated.
They have to be re-evaluated since the previous times v was processed
we can have ignored the operand corresponding to the edge (u, v).
The other statements will be re-evaluated if they enter the
ssa-worklist.

Jonas Skeppstedt Lecture 5 2016 12 / 30



Main Algorithm

procedure cprop
for each definition d do

value (d) ← >
for each vertex w do

visited (w) ← false
visit_vertex (s)
while (not empty (edge_worklist) or not empty (ssa_worklist)) do

if (not empty (edge_worklist))
edge ←take edge from edge_worklist
if (not executable (edge))

set_executable (edge)
visit_vertex (head (edge))

if (not empty (ssa_worklist))
t ←take statement from ssa_worklist
visit_stmt(t)

Jonas Skeppstedt Lecture 5 2016 13 / 30



Visiting a Basic Block

procedure visit_vertex (w)
bool onlyphi

onlyphi ← visited(w)
set_visited(w)
for each statement t in w do

if (onlyphi and t is not φ)
return

visit_stmt(t)

Jonas Skeppstedt Lecture 5 2016 14 / 30



Visiting a Statement 1(3)

procedure visit_stmt (t)
w ← vertex (t)
switch (stmt_type(t)) {
case unconditional_branch:

add_edge(w , succ(w))
break

case conditional_branch:
add appropriate edges depending on what is known
about the operands
break

Jonas Skeppstedt Lecture 5 2016 15 / 30



Visiting a Statement 2(3)

case add:
left ← value of first source operand
right ← value of second source operand
result ← what can be determined from left and right
if (result < value(t))

add uses of destination of t to ssa_worklist
value(t)← result

break

Jonas Skeppstedt Lecture 5 2016 16 / 30



Visiting a Statement 3(3)

case φ:
result ← >
for each p ∈ pred(w) do

if (the edge (p,w) is marked executable)
value ← value of φ-function operand for p
result ← result ∧ value

if (result < value(t))
add uses of destination of t to ssa_worklist
value(t)← result

break

...
}

Jonas Skeppstedt Lecture 5 2016 17 / 30



An Example 1(10)

a0 ← 0
0

b0 ← a0 + 1
b0 = a0?

1

a1 ← 2
2

yes no

a4 ← φ(a1, a3)
a5 ← a4 + 5

5

a6 ← φ(a1, a5)
a7 ← a4 + 6

3

a8 ← φ(a7, a3)
put(a8)

4

a2 ← φ(a0, a3)
a3 ← a2 + 4
a3 = 11?

yes no

6

7

a3 = 4?
8

no yes

edge_worklist = ∅
ssa_worklist = ∅

Jonas Skeppstedt Lecture 5 2016 18 / 30



An Example 2(10): Visit 0

a0 ← 0
0

b0 ← a0 + 1
b0 = a0?

1

a1 ← 2
2

yes no

a4 ← φ(a1, a3)
a5 ← a4 + 5

5

a6 ← φ(a1, a5)
a7 ← a4 + 6

3

a8 ← φ(a7, a3)
put(a8)

4

a2 ← φ(a0, a3)
a3 ← a2 + 4
a3 = 11?

yes no

6

7

a3 = 4?
8

no yes

edge_worklist = {(0, 1)}

Jonas Skeppstedt Lecture 5 2016 19 / 30



An Example 3(10): Visit 1

a0 ← 0
0

b0 ← a0 + 1
b0 = a0?

1

a1 ← 2
2

yes no

a4 ← φ(a1, a3)
a5 ← a4 + 5

5

a6 ← φ(a1, a5)
a7 ← a4 + 6

3

a8 ← φ(a7, a3)
put(a8)

4

a2 ← φ(a0, a3)
a3 ← a2 + 4
a3 = 11?

yes no

6

7

a3 = 4?
8

no yes

edge_worklist = {(1, 6)}

Jonas Skeppstedt Lecture 5 2016 20 / 30



An Example 4(10): Visit 6

a0 ← 0
0

b0 ← a0 + 1
b0 = a0?

1

a1 ← 2
2

yes no

a4 ← φ(a1, a3)
a5 ← a4 + 5

5

a6 ← φ(a1, a5)
a7 ← a4 + 6

3

a8 ← φ(a7, a3)
put(a8)

4

a2 ← φ(a0, a3)
a3 ← a2 + 4
a3 = 11?

yes no

6

7

a3 = 4?
8

no yes

Ignore a3 in φ-function in vertex 6.

edge_worklist = {(6, 7)}

Jonas Skeppstedt Lecture 5 2016 21 / 30



An Example 5(10): Visit 7

a0 ← 0
0

b0 ← a0 + 1
b0 = a0?

1

a1 ← 2
2

yes no

a4 ← φ(a1, a3)
a5 ← a4 + 5

5

a6 ← φ(a1, a5)
a7 ← a4 + 6

3

a8 ← φ(a7, a3)
put(a8)

4

a2 ← φ(a0, a3)
a3 ← a2 + 4
a3 = 11?

yes no

6

7

a3 = 4?
8

no yes

Ignore a3 in φ-function in vertex 6.

edge_worklist = {(7, 8)}

Jonas Skeppstedt Lecture 5 2016 22 / 30



An Example 6(10): Visit 8

a0 ← 0
0

b0 ← a0 + 1
b0 = a0?

1

a1 ← 2
2

yes no

a4 ← φ(a1, a3)
a5 ← a4 + 5

5

a6 ← φ(a1, a5)
a7 ← a4 + 6

3

a8 ← φ(a7, a3)
put(a8)

4

a2 ← φ(a0, a3)
a3 ← a2 + 4
a3 = 11?

yes no

6

7

a3 = 4?
8

no yes

edge_worklist = {(8, 6)}

Jonas Skeppstedt Lecture 5 2016 23 / 30



An Example 7(10): Revisit 6

a0 ← 0
0

b0 ← a0 + 1
b0 = a0?

1

a1 ← 2
2

yes no

a4 ← φ(a1, a3)
a5 ← a4 + 5

5

a6 ← φ(a1, a5)
a7 ← a4 + 6

3

a8 ← φ(a7, a3)
put(a8)

4

a2 ← φ(a0, a3)
a3 ← a2 + 4
a3 = 11?

yes no

6

7

a3 = 4?
8

no yes

Now only the φ-function is
re-evaluated at first.

This time a2 is classified as a
nonconstant.

Then use of a2 is put in the
ssa-worklist.

Then use of a3 in the branch is put
in the ssa-worklist.

Since a3 is nonconstant also (6, 5)
will be interpreted.

edge_worklist = {(6, 5)}

Jonas Skeppstedt Lecture 5 2016 24 / 30



An Example 8(10): Visit 5

a0 ← 0
0

b0 ← a0 + 1
b0 = a0?

1

a1 ← 2
2

yes no

a4 ← φ(a1, a3)
a5 ← a4 + 5

5

a6 ← φ(a1, a5)
a7 ← a4 + 6

3

a8 ← φ(a7, a3)
put(a8)

4

a2 ← φ(a0, a3)
a3 ← a2 + 4
a3 = 11?

yes no

6

7

a3 = 4?
8

no yes

Now a1 is ignored but a3 is
nonconstant.

a4 and a5 become nonconstant as
well.

edge_worklist = {(5, 3)}

Jonas Skeppstedt Lecture 5 2016 25 / 30



An Example 9(10): Visit 3

a0 ← 0
0

b0 ← a0 + 1
b0 = a0?

1

a1 ← 2
2

yes no

a4 ← φ(a1, a3)
a5 ← a4 + 5

5

a6 ← φ(a1, a5)
a7 ← a4 + 6

3

a8 ← φ(a7, a3)
put(a8)

4

a2 ← φ(a0, a3)
a3 ← a2 + 4
a3 = 11?

yes no

6

7

a3 = 4?
8

no yes

Again a1 is ignored but a5 is
nonconstant.

a6 and a7 become nonconstant as
well.

edge_worklist = {(3, 4)}

Jonas Skeppstedt Lecture 5 2016 26 / 30



An Example 10(10): Visit 4

a0 ← 0
0

b0 ← a0 + 1
b0 = a0?

1

a1 ← 2
2

yes no

a4 ← φ(a1, a3)
a5 ← a4 + 5

5

a6 ← φ(a1, a5)
a7 ← a4 + 6

3

a8 ← φ(a7, a3)
put(a8)

4

a2 ← φ(a0, a3)
a3 ← a2 + 4
a3 = 11?

yes no

6

7

a3 = 4?
8

no yes

a8 will be read from memory.

Vertex 2 and the branch to it can
be deleted.

In this example, for simplicity, we
have not included the contents of
the ssa-worklist.

Jonas Skeppstedt Lecture 5 2016 27 / 30



Simple Extensions 1

if (a != 44)
b = a + 1;

else {
b = a + 2;
f(b);

}

The parameter must have the value 46.
By inserting b = 44 in the else-clause, the
constant propagation algorithm is helped.

Jonas Skeppstedt Lecture 5 2016 28 / 30



Simple Extensions 2

if (x != y) {
a = 1;
b = 2;

} else {
a = 2;
b = 1;

}

c = a + b;

Clearly the sum is 3 but the present
algorithm cannot find this.
It’s a rather trivial extension to ”enhance”
the algorithm to cover such codes as well.
Is it worth it? No, only in very rare codes is it
beneficial while all compilations would be
somewhat slower.
Also see next slide for an important principle!

Jonas Skeppstedt Lecture 5 2016 29 / 30



A Remark About Rarely Used Optimizations

And a more important point than making the compiler slightly slower:
never include optimizations in a compiler which are rarely useful
because then they are much more likely to contain obscure bugs than
if they are used millions of times every day!
There was a famous bug in a Bell Labs FORTRAN compiler which
was an ”optimization” which had never been useful for years.
Once it was but it resulted in incorrect code and a lot of confusion for
the programmer!
It is said to have costed the compiler writer several days to implement
for no use and then additional application debugging time!

Jonas Skeppstedt Lecture 5 2016 30 / 30


