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Live Variables Analysis

int h(int a, int b)
{

int c;

S1: c = a + b;

S2: if (c < 0)
return c * 44;

S3: a = b - 14;

return -a;
}

A variable x is live at a point p
(instruction) if it may be used in
the future without being
assigned to.
a is live from the function start
and up to and including the add,
and then after S3 and up to and
including the negation.
b is live from the start and up to
and including the subtraction.
c is live from S1 and up to and
including the multiplication.
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Live Variables Analysis for Register Allocation

Live Variables Analysis is used for different purposes.
For example an assignment to a local variable which is not used in the
future can be removed.
This is called dead code elimination (DCE) and DCE based on live
variables analysis was used before SSA Form, which introduced a
better form of DCE (which you will implement in a project).
We will use live variables analysis for register allocation.
Two variables live at the same point in the program are said to
interfere and cannot be allocated the same register.
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Uses and Kills

Live variables analysis is performed in a local and a global analysis.
In the local analysis, each basic block (vertex) is inspected with the
purpose of finding which variables are first used or first defined
(assigned to).
The information that a variable is live propagates backwards in the
control flow graph (CFG) from a use and to its definition.
The propagation of a use stops at a definition. The use in a + 13 is
killed by the definition a = 14.
a = 44;
b = a + 11;
a = 14;
b = a + 13;
In the global analysis the local information is combined to produce the
complete view.
Sometimes gen/kill is used instead of use/def.
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Local Analysis

procedure local_live_analysis
for each vertex w do

for each stmt s do /* forward direction */
for each used variable x of s do

if (x /∈ def (w))
add x to use (w)

for each defined variable x of s do
if (x /∈ use (w))

add x to def (w)
end
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Local Analysis Example

a = 10

b = a+11

c = a+22

d = b+c3

b = c+14

ret a+b5

c = a+3 6

b = a-1 7

a = 2 8

vertex use def
0 ∅ {a}
1 {a} {b}
2 {a} {c}
3 {b, c} {d}
4 {c} {b}
5 {a, b} ∅
6 {a} {c}
7 {a} {b}
8 ∅ {a}
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Global Analysis

procedure global_live_analysis
change ← true
while (change ) do

change ← false
for each vertex w do

out(w)←
⋃

s ∈ succ(w)
in(s)

old ← in(w)
in(w)← use(w) ∪ (out(w)− def (w))
if (old 6= in(w))

change ← true
end

In EDAN26 this function is parallelized in Java, Scala, and C
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Backwards Dataflow: use postorder traversal

Since data flows backward we want to have processed the successors
of a vertex w before we process w .
num initially zero below.

procedure find_postorder(w )
visited (w) ← true
for each s ∈ succ(w) do

if (not visited (s))
find_postorder(s )

array [num ] ← w
num ← num + 1

end
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Global Analysis Example: Iteration 1

a = 10
out

in

b = a+11

c = a+22

d = b+c3

b = c+14

ret a+b5

c = a+3 6

b = a-1 7

a = 2 8

out(w)←
⋃

s ∈ succ(w)
in(s)

in(w)← use(w) ∪ (out(w)− def (w))

vertex use def out in
5 {a, b} ∅ ∅ {a, b}
4 ∅ {b} {a, b} {a, c}
3 {b, c} {d} {a, c} {a, b, c}
2 {a} {c} {a, b, c} {a, b}
8 ∅ {a} {a, b} {b}
7 {a} {b} {a, b, c} {a, c}
6 {a} {c} {a, c} {a}
1 {a} {b} {a, b} {a}
0 ∅ {a} {a} ∅
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Global Analysis Example: Iteration 2

a = 10
out

in

b = a+11

c = a+22

d = b+c3

b = c+14

ret a+b5

c = a+3 6

b = a-1 7

a = 2 8

out(w)←
⋃

s ∈ succ(w)
in(s)

in(w)← use(w) ∪ (out(w)− def (w))

vertex use def out in
5 {a, b} ∅ ∅ {a, b}
4 ∅ {b} {a, b} {a, c}
3 {b, c} {d} {a, c} {a, b, c}
2 {a} {c} {a, b, c} {a, b}
8 ∅ {a} {a, b} {b}
7 {a} {b} {a, b, c} {a, c}
6 {a} {c} {a, c} {a}
1 {a} {b} {a, b} {a}
0 ∅ {a} {a} ∅
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Constructing the Interference Graph

Each vertex is analyzed again and the set of live variables in a vertex
is maintained.
The live set is initialized to w(out) when vertex w is inspected.
When a variable x is defined, an edge (x , y), ∀y ∈ live − {x} is added
to the interference graph (if it’s not already there).
The instructions in w are inspected in reverse order.
After an instruction i has been inspected, the live set becomes:

live = use(i) ∪ (live − {def (i)})
Our description assumes there is at most one destination operand in
an instruction.
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An Example

a = 1
b = a + 2
c = a - b
d = c
e = d + 1
f = d - e

ret c + f

Which variables cannot use the same register?
How many registers are needed?
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The Interference Graph

a = 1
b = a + 2
c = a - b
d = c
e = d + 1
f = d - e

ret c + f

a b

c d

e f

live = use(i) ∪ (live − {def (i)})
1 Initially live = out = {c , f }.
2 def (f ): add edge (c , f ).

live = {c , d , e}.
3 def (e): add edges (e, c), (e, d).

live = {c , d}.
4 def (d): add edge (d , c).

live = {c}.
5 def (c): no new edge.

live = {a, b}.
6 def (b): add edge (a, b).

live = {a}.
7 def (a): no new edge. live = ∅.
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Coloring the Interference Graph

a = 1
b = a + 2
c = a - b
d = c
e = d + 1
f = d - e

ret c + f

a b

c d

e f

This interference graph needs three
colors.
Can we use fewer colors?
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Register Coalescing

a = 1
b = a + 2
c = a - b
d = c
e = d + 1
f = d - e

ret c + f

a b

c,d

e f

c and d have the same value so they
can use the same register!
It is done using a technique called
register coalescing.
Register coalescing is an example of
node merging.
Register coalescing needs a minor
modification to the construction of the
interference graph.
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Constructing the Interference Graph for Register Coalescing

a = 1
b = a + 2
c = a - b
d = c
e = d + 1
f = d - e

ret c + f

Consider a copy instruction x = y .
The interference graph is called the IG .
Recall: an edge (x , y) is added to the IG between the
defined variable x and each y ∈ live, x 6= y , (x , y) /∈ IG .
When y ∈ live we will add (x , y) to IG .
By removing y from live and noting that these variables
might be merged to a single variable we prepare for
register coalescing.
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Summary so far

Copy instructions are treated in a special way.
Variables live at the same time cannot be allocated the same register
and an edge in the interference graph IG is added between them.
Given an interference graph, we want to color it with as few colors as
possible.
However, we are not always looking for the optimal solution with
fewest colors since that solution may use more colors than there are
registers.
Furthermore, since graph coloring is NP-complete we use an
approximation.
The algorithm described next was invented by Greg Chaitin in 1980 for
the IBM 801 project.
A variable is called a live range.
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From Chaitin’s retrospective about his register allocator

IBM 801 project: This project was a once-in-a-lifetime opportunity
to reinvent everything, from the machine architecture, to the
programming language and compiler and the operating system.
Everyone on the project was extremely talented and adventurous. We
all worked in a single room, and design decisions were made as a
group as we all coded and tested our prototype software.
Chaitin allocator: So I regard the success of this approach, which has
been the basis for much future work, as a triumph of the power of a
simple mathematical idea over ad hoc hacking.
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Simplifying the Interference Graph

Consider an interference graph IG and a number of available colors K .
Assume the IG can be colored with K colors and there is a node
v ∈ IG with fewer than K neighbors.
Since v has fewer than K neighbors there must be at least one unused
color left for v .
Therefore we can remove v from the IG without affecting the
colorability of IG .
We remove v from IG and push v on a stack.
Then we proceed looking for a new node with fewer than K neighbors.
Assume the original IG was colorable and all its nodes have been
pushed on the stack.
Then each node is popped and re-inserted into IG and given a color
which no neighbor has.
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Spilling

The number of neighbors of a node v is denoted its degree, or deg(v).
When there is no node with deg(v) < K a variable is selected for
spilling.
Spilling means that a variable will reside in memory instead of being
allocated a register.
Through spilling the IG eventually will become empty, obviously.
Heuristics are used to decide which variable (i.e. node) to spill.
The expected number of memory accesses removed by allocating a
variable is calculated, and this count is typically divided by a ”size” of
the node.
By size is meant the number of vertices or instructions that the
register would be reserved in for that variable, and hence cannot be
used for any other variable.
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Rewriting the Program after Spills

a = b+c;

...

d = a + c;

-----------

t1 = b + c;
a = t1;

...

t2 = a;
d = t2 + a;

On a RISC machine where operands cannot
be in memory a new tiny live range is created
at each original memory access of the spilled
variable.
These tiny live ranges should never be spilled.
The rewriting is done after all nodes have
been removed from the interference graph.
If there was spilling the algorithm is
re-executed.
Eventually it will terminate and three
iteration almost always suffice.
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Overview of the Algorithm

1 Perform live variable analysis.
2 Construct the interference graph.
3 Either simplify the interference graph by removing a node and push it

on a stack, or spill a node to memory, until the interference graph is
empty.

4 If there were any spill, create tiny live ranges to load and store the
spilled variables, and goto 1.

5 If there were no spills, then assign colors to the nodes when popping
them from the stack, and then change the program to use registers
instead of variables.
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More Details About Coalescing

Two nodes can be coalesced into one if they do not interfere.
By removing the source operand temporarily from the live set, the
copy statement does not add an edge between the source and
destination operands.
However, in the following code there will be an edge between c and d .
c = a - b
d = c
e = d + 1
c = d + 2
g = d + 3

With SSA Form, however, the assignments to c would be to two
different variables so that problem is avoided.
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Risks with Coalescing

Assume two live ranges u and v are coalesced into uv .
The new live range will have the union of the neighbors of u and v .
If u and v have the same neighbors then its no problem.
However, if deg(u) < K ∧ deg(v) < K ∧ deg(uv) ≥ K then the IG
can become incolorable due the coalescing.
Therefore, heuristics of when to coalesce have been developed.
Chaitin’s original algorithm coalesced everything it could.
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Conservative Coalescing

A node u has significant degree if deg(u) ≥ K .
Conservative coalescing, introduced by Briggs, does not merge nodes
if the resulting node uv has K or more neighbors of significant degree.
All neighbors without significant degree will be removed during
simplification.
All neighbors with significant degree might remain and if uv has K or
more such neighbors, the IG cannot be colored.
This approach is conservative due to that it might have been possible
to coalesce u and v and still color the IG since some neighbors might
have been allocated the same color, and leaving a color for uv .

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2016 25 / 38

js@cs.lth.se


Iterated Register Coalescing

Chaitin’s coalescing was performed before simplification.
Brigg’s coalescing was also done before simplification.
In Iterated Register Coalescing by George and Appel, the coalescing
is performed as a part of the main loop:
In the main loop, the following are attempted in sequence:

1 Simplify, but no ”move”-related nodes — they wait for coalescing.
2 Coalescing
3 Freeze — move-related nodes that could not be coalesced no longer are

considered as move-related.
4 Spilling
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More Details

The interference graph is represented in two ways. Both as a bit
matrix, and as adjacency lists.
Function call and return conventions introduces precolored live
ranges. For example, the first integer parameter is passed in register
R3 on Power machines.
With coalescing this is simply solved by introducing copy statements
and when possible merging a variable passed as a parameter with the
precolored node. This way the variable gets the correct register when
possible.
In Optimistic coloring (Briggs) a variable can be removed from the
IG and pushed even if it has significant degree. Whether it should be
spilled or not is determined when it is re-inserted into IG after being
popped. If there is no available color then it’s spilled.
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Alternatives to spilling

Sometimes it is possible to recompute a value instead of spilling the
live range.
For instance constants too large for an instruction’s immediate field
are put in a register and this can be re-computed cheaply.
Addresses can oftn be recomputed in one or two instructions.
This is called rematerialization and is tried before spilling.
Another alternative is live range splitting which has the purpose to
partly color a variable.
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Caller vs Callee Save Registers

The Application Binary Interface (ABI) specifies for UNIX which
registers the caller and the callee are responsible for saving and
restoring.
An Example: General Purpose Registers (ie integer) on Power:
Stack pointer: R1
Thread pointer: R2
Caller-saved: R3..R12
Callee-saved: R13..R31

If a variable allocated to a caller-save register is live across a function
call, it must be saved before the call and restored after it.
A function may modify the callee-save registers but must save and
restore them.
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Neither is optimal

If all registers are caller-save, then typically some unnecessary saving
will take place unless the called function modifies all registers.
If all registers are callee-save, then it’s likely the called function
preserves a register which the caller will not use after the call.
When a color is to be selected for a variable, if it’s live across function
calls, it’s preferable to use a callee-save register and hope that the
called function will not use that register.
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Shrink-wrapping

A technique to reduce callee-saves overhead is to do it lazily.
Published by Fred Chow at SGI.
Instead of doing all saves and restores in the start and exit vertices,
they are moved to where they are needed, but not into loops (which
would be bad for performance).
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Avoiding redundant caller-saves/restores

If there are multiple function calls in e.g. a basic block, it it important
not to do caller-saves/restores for each call.
Only do it for the registers really needed between those calls!
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Interprocedural Register Allocation

Intraprocedural register allocation can also assign global variables to
registers but only after copying to a temporary and then saving them
in memory before a function call or its own return (if the variable was
modified).
Interprocedural register allocation aims at three things:

Allocate global variables in registers in a region of several functions.
Make better choices with respect to caller/callee save registers.
Avoid doing callee-save and restore unless necessary.

Interprocedural register allocation is most effective if the whole
program can be analyzed.

Jonas Skeppstedt (js@cs.lth.se) Lecture 4 2016 33 / 38

js@cs.lth.se


Call Graph

The call graph has functions as nodes and function calls as edges.
The linker (or a similar module) can construct the call graph after it
has found all files needed for an application.
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Global Variable Register Allocation

a

b c

d

ef

g

h

In a first step each function f is analyzed to
find which and how frequently global
variables are accessed in f .
In a second step the call graph is constructed
and sets of functions, called webs, for each
variable is constructed.
A web is a subgraph of the call graph in
which a global variable may be allocated a
register.
Let x be used in all functions except b, f , h.
The web for x will be {a, b, c, d , e, f , g}.
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Using the Webs

a

b c

d

ef

g

h

A global variable can have many webs.
When two webs for different variables have
nodes in common, they interfere.
The global variable register allocator
estimates how useful it will be to allocate a
certain web to a callee-save register.
The webs compete and some are given a
register.
The program is then rewritten with some
webs ”precolored”.
Since a callee-save register is used, the
function h will not destroy the global
variable.
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Modifying the Program

a

b c

d

ef

g

h

Some nodes in a web are called entry nodes,
and they are a and b in our example.
The variable must be read from memory in
the entry nodes.
Note that in our example, the variable was
not used in b but b must be part of the web
and b must read the variable from memory.
In addition to being responsible for reading
the variable from memory to the allocated
register, the entry nodes are also responsible
for writing the value to memory if needed.
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Moving Saves and Restores

a

b c

Assume b and c are called frequently.
Instead of letting them do the callee-save
and restore, it can be done in a.
This can improve performance.
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