Contents of Lecture 3

@ Translation to SSA Form

@ Translation from SSA Form

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2016 1/ 29

js@cs.lth.se

Translation to SSA Form

A function is translated to SSA Form in the following steps

@ Compute the dominator tree DT of the function.
@ Compute the dominance frontier of each vertex in the CFG.
© Insert ¢-functions.

@ Rename variables while traversing the dominator tree.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3

js@cs.lth.se

@ We want to insert a ¢-function where two paths from assignments
meet.

@ This formulation of the problem was difficult to use to find an efficient
algorithm.

@ The following which makes it easier to answer the question of where
to insert ¢-functions:

@ Trick: Every variable is given a assignment in the start vertex.
@ That is, a variable x is given an assignment xg in the start vertex.

@ No assembler code is produced for the assignment though.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2016 3/ 29

js@cs.lth.se

Why would xg help?77?

X0

X? X1

X?

@ With the assignment to xg we
can see that two paths from
assignments join in the vertices
with x;.

@ Therefore each of them needs a
¢-function.

@ Another way to see this is that
these vertices are just outside
what is dominated by the vertex
with x; =.

Jonas Skeppstedt (js@cs.lth.se)

Lecture 3

js@cs.lth.se

Dominance frontier

Informally, we need to insert a ¢-function in every vertex which is "just
outside” what is dominated by a vertex with an assignment.

"Just outside” is called the dominance frontier of a vertex u.
It is written DF(u).
DF(u)={v|3p € pred(v), u>p, u 3 v }.

In words: if u dominates a predecessor of v but does not dominate v
strictly, then v is in the dominance frontier of u.

After the dominator tree is found, the dominance frontier for each
vertex is computed.

Each local variable and compiler-generated temporary is inspected: for

each vertex u with an assignment to the variable, a ¢-function is
inserted in DF (u).

Note that a ¢-function is an assignment — which also needs
¢-functions in the dominance frontier of its vertex.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2016 5/ 29

js@cs.lth.se

Multiple assignments

Xn = .
0 @ The assignment to x4 means

that that vertex is dominated by
two different assignments.

@ Therefore we must rename the

X1 = variables in a certain order so
N\ that after a later assignment the
Xy = X1 up-to-date version is used during

— N/ the renaming.

2 = ¢x0,xa)| s =00ax)| Obviously it is x4 that should be

— the ¢-operand and not x;.

X3 = ¢(X2,X5)

@ This is achieved by using a stack
of variable versions.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2016 6 /29

js@cs.lth.se

Using the Dominator Tree and a Stack of Variable Versions

e After ¢-functions have been
Xp = inserted (more details below) the
dominator tree is traversed
during variable renaming.

@ Each variable has its own stack

x| = of variable versions.
N @ At a use of a variable in a
Xy = X1 statement, the variable is
- NS replaced in the statement by the
X = d(x0,%a)| x5 = d(xa, x1) top of variable’s stack.
- @ At an assignment a new variable
x3 = P(x2, X5) version is pushed on the

variable's stack, and the variable
is replaced in the statement by
the new version.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2016 7/ 29

js@cs.lth.se

lllustration of what happens near the assignment to x

@ The new version xj is pushed on
the stack of x.

X0 —

@ The vertex with x4 is a child in
the DT and is inspected next.

@ The new version x4 is pushed on
the stack of x.

N @ The ¢-function in the successor
X4 = X1 vertex gets one of its operands

rd NS replaced to x4 from the current

X = ¢(x0,xa)| |x5 = H(xa, x1) top of the stack.

- @ The vertex with x4 has no child

x3 = P(xo, X5) in the DT and x4 is popped

from the stack.

X1

@ x1; becomes the top of the stack
and is used next.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2016 8/ 29

js@cs.lth.se

Strict Dominance in the Definition of Dominance Frontier

DF(u) = {v|3p € pred(v),u > p,u % v}.
Consider 7 and suppose it contains ++i.

It then needs i = ¢(i, i).

DF(7) = {5,7}.

When 7 is added to its own DF it is u, p,

and v in the definition.

This situation is the reason for using not
strict dominance in the definition.

Jonas Skeppstedt (js@cs.lth.se)

Lecture 3 2016 9 /29

js@cs.lth.se

Computing the Dominance Frontiers of a CFG

DF(u) = {v|3p € pred(v),u > p,u % v}
Below children(u) is the set of children of u
in the dominator tree.

The dominance frontier is computed bottom
up in the dominance tree using:

_ U
DF(u) = DFiocar(u) U c € children(u) DFup(c)

DFiocai(u) = {v € succ(u)| u # v}
DF,.(c) < {v e DF(c)|idom(c) » v}.
These formulas can be simplified further as

we will see, but first we will build intuition
into why they are correct.

Jonas Skeppstedt (js@cs.lth.se)

Lecture 3 2016 10 / 29

js@cs.lth.se

Jonas Skeppstedt (js@cs.lth.se)

DFioeat(t) € {v € succ(u)| u % v}
The set DFjyca(u) is the contribution to

DF (u) which can be determined by only
looking at the successors of u in the CFG.

Since u does not dominate v strictly, but
clearly it dominates a predecessor of v
(namely itself), v € DF(u).

For example, 3 € DF(2) and 7 € DF(7)
But e.g. 3¢ DF(1) since 1 > 3.

Lecture 3 2016 11 / 29

js@cs.lth.se

Jonas Skeppstedt (js@cs.lth.se)

DF,.(c) < {v e DF(c) | idom(c) % v}.
The set DF,,(c) is the contribution from a
vertex ¢ to the DF of idom(c).

Example: DF,,(4) = {5}.

To see that DF,,(c) C DF(idom(c)),
consider any vertex v € DF(c).

From the definition of DF(c) there must be
a p € pred(v) such that ¢ > p.

Since dominance is transitive and obviously
idom(c) > ¢ we must have idom(c) > p.

Thus the vertices in DF(c) which are not
strictly dominated by idom(c) should be
added to DF(idom(c)) and this is what
DF,5(c) achieves.

Lecture 3 2016 12 / 29

js@cs.lth.se

More about dominance frontiers

In the book is also shown that every vertex in
DF (v) is accounted for in either DFjoc5(Vv)
or DF,,(c) where idom(c) = v.

One can also show that instead of:
de

DFjocar(u) {v € succ(u)| u H v}, we
can use:

DFjocai(u) def {v € succ(u)| u # idom(v) },
and

DF () et {v € DF(c)|idom(c) # idom(v)}.

Lecture 3 2016 13 / 29

Jonas Skeppstedt (js@cs.lth.se)

js@cs.lth.se

Computing the Dominance Frontiers of a CFG

DT procedure df(G,DT)

0 Q for each v in a postorder traversal of DT do
DF(u) < ()
9‘ 0 for each v € succ(u) do
> if (idom(v) # u)

a 6 e e a add v to DF(u)
e a‘ G 9 for each w € children(u) do

a for each v € DF(w) do
a if (idom(v) # u)
add v to DF(u)

Jonas Skeppstedt (js@cs.lth.se) Lecture 3

js@cs.lth.se

Computing the Dominance Frontiers of a CFG

Jonas Skeppstedt (js@cs.lth.se)

By postorder traversal is meant that when
we visit vertex u, we first compute the
dominance frontier of each child ¢ of v in
DT before we compute DF(u).

You will implement this function in Lab 2.
Recursively walk through the dominator tree.

The first computed set will be
DFlocal(7) — {57 7}'

DF,5(c) is never explicitly stored but
computed by inspecting DF(¢)

The first complete computed dominance
frontier will be DF(7) = {5,7}.

Then DF(6), DF(2), DF(4), DF(3) etc..

Lecture 3 2016 15 / 29

js@cs.lth.se

Inserting ¢-functions

Q @ ¢-functions are inserted for one variable at a time.
@ A counter iteration is incremented when the next
G variable is processed — i.e. gets its ¢-functions inserted
into the CFG.
9‘ @ Each vertex has two attributes for the ¢-function
9 insertion which keeps track of for which iteration (value

e @ of counter) it was processed:

o has already - used to determine whether a ¢-function

a a for a certain variable has already been inserted in that
vertex.
a o work — used to determine whether that vertex has been

put in a worklist called W.

@ These variables are all set to zero initially.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2016 16 / 29

js@cs.lth.se

Insert ¢-functions

procedure insert-¢
W <+ 0
for each variable x do
iteration < iteration + 1
for each u € vertex with assignment(x) do

work|u] < iteration
add u to W

while (W # () do
take u from W
for each v € DF(u) do
if (has already|v| < iteration)
place x < ¢(x,...,x) at v
has already|v| < iteration
if (work|v] < iteration)
work|v] < iteration
add v to W

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2016 17 / 29

js@cs.lth.se

Remarks on previous slide

@ The use of an explicit counter and the attributes work and
has already is how the algorithm was originally described by
researchers from IBM.

@ This is more efficient than using lookup-functions to determine
whether a vertex has a certain ¢-function or a vertex is in the worklist.

@ For optimizing compilers research the speed of the compiler at normal
optimization levels, e.g. -02 is extremely important.

@ However, some optimizations which analyze the whole program is
sometimes allowed to take hours.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2016 18 / 29

js@cs.lth.se

Rename

@ Rename performs a traversal of the dominator tree.
@ In a vertex u the sequence of three-address statements is examined
one statement at a time:

o First the source operands (right hand side, or RHS) are renamed by
replacing the operand with the version of the variable on the top of the
variable's rename stack.

o Then the destination operand (left hand side, or LHS) is renamed by
creating a new variable version, pushing it on the rename stack, and
replacing the operand with the new version of the variable.

@ Then the ¢-functions of each successor vertex v in the CFG is
inspected and the operand corresponding to the edge (u, v) is
renamed.

@ Then each child c in the DT is processed.

e Finally every new version created and pushed on a rename stack in u
is popped from its rename stack.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2016 19 / 29

js@cs.lth.se

Rename Algorithm

procedure rename (u)
for each statement t in u do
for each variable x € RHS(t)
replace use of x by use of x; where i = top(S(x))
for each variable x € LHS(t) do
i < C(x)
replace x by x;
push i/ onto S(x)
C(x)«+ C(x)+1
for each v € succ(u) do
J < which_pred(u,v)
for each ¢-function in v do
replace the j-th operand in RHS(¢) by x; where i = top(5(x))
for each v € children(u) do
rename(v)
pop every variable version pushed in u

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2016 20 / 29

js@cs.lth.se

Unnecessary ¢-functions

@ It's unnecessary to insert a ¢-function if its value is never used:

if (a > 0) {
a=a-+1;
f(a);

+

return b;

@ Before the return, there will be a ¢-function due to the assignment to
a.

@ In general the cost to determine whether the value will be used is not
worth the effort.

@ It's not uncommon that a ¢-function is inserted in a vertex where the
value is overwritten before being used. This special case can be easy
to determine and may be worth the effort of avoiding inserting an
unnecessary ¢-function.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2016 21 / 29

js@cs.lth.se

Variable versions are almost only for illustration

@ Most optimization algorithms ignore the variable version number and
treat for instance a; and a; as completely different variables which
have no more in common than a; and by have.

@ Therefore no counter is usually needed: it's sufficient to simply create
a new temporary variable.

@ However, Partial Redundancy Elimination, SSAPRE, needs to know
from which original variable such a temporary comes.

2016 22 / 29

Jonas Skeppstedt (js@cs.lth.se) Lecture 3

js@cs.lth.se

Translation from SSA Form

alg = us+w
ay > by 17

/
N\

\

d> — U3z — VW2
b5232—1

/

as = ¢(ai1, az)
be = ¢(ba, bs)
y1 = a3 * bg

@ The basic idea when translating
from SSA Form is to replace the
¢-functions with copy
statements in the predecessor
vertices.

Lecture 3 2016 23 / 29

Jonas Skeppstedt (js@cs.lth.se)

js@cs.lth.se

Translation from SSA Form

ay > by 77

/ d2 = Uz — V2
d3 — di b5 32—1
b6:b4 d3 = do

\ bs = bs

Lecture 3

It's thus necessary to have a
vertex to insert the copy
statements into!

Without the leftmost vertex,
there is an edge from a vertex
with multiple successors to a
vertex with multiple predecessors
and such an edge is called a
critical edge.

Critical edges are removed by
Inserting an extra empty vertex.

This is done before dominance
analysis.

Jonas Skeppstedt (js@cs.lth.se)

2016 24 / 29

js@cs.lth.se

Translation from SSA Form

AN
\/

¢(a1, b2)
Qb(bla 32)

Lecture 3

@ The ¢-functions are parallel
copy statements.

@ Conceptually all ¢-functions are
executed concurrently by first
reading all operands and then
writing all destinations.

@ So what will go wrong here with
a "'naive” translation from SSA
Form?

Jonas Skeppstedt (js@cs.lth.se)

2016 25 / 29

js@cs.lth.se

Translation from SSA Form

/ N\

a» = ap a> = by
b, = by b = a5 @ What is wrong here?

N/

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2016 26 / 29

js@cs.lth.se

Translation from SSA Form

/N

X = an
ar = b, @ The value of a» must be saved

— bl\ b, = x before being overwritten!

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2016 27 / 29

js@cs.lth.se

Detect Use of Uninitialized Variables

@ If version zero is used and there was no explicit initializer for the
variable (i.e. no int a = 1) it means we might have discovered a
buggy program with undefined behavior!

@ If the code is executed at runtime, it is undefined behavior, but the
code might never be reached.

@ It is a good idea to warn about it anyway.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2016 28 / 29

js@cs.lth.se

Copy Propagation

@ During Translation to SSA Form, a copy statement a = b can be
optimized as follows:

@ The current value of b, i.e. the version on the top of b's rename stack
is pushed on a’s rename stack and this copy statement (MOV) can then

be removed.
@ You will do this during Lab 2.

2016 29 / 29

Jonas Skeppstedt (js@cs.lth.se) Lecture 3

js@cs.lth.se

