Contents of Lecture 2

- Dominance relation
- An inefficient and simple algorithm to compute dominance
- Immediate dominators
- Dominator tree

Definition of Dominance

- Consider a control flow graph G(V, E, s, e) and two vertices $u, v \in V$.
- If every path from s to v includes u then u dominates v.
- For example 1 dominates itself, 2, 3, 4, and e.

Notation and obvious facts

- We write u dominates v as $u \gg v$.
- The set of dominators of a vertex w is written as dom(w), i.e.
- $\bullet \ dom(w) = \{v | v \gg w\}.$
- The start vertex has only one dominator: $dom(s) = \{s\}$.
- All vertices are dominated by s.
- If $u \ge v$ and $u \ne v$ then we say that u strictly dominates v which is written as $u \gg v$.

A restriction on CFG's

- In a CFG, we require that all vertices are on a path from s to e.
- Vertices reachable from s can be detected using depth first search, and then all unvisited vertices can be deleted.
- Due to return statements and infinite loops there can be vertices with no path to e.
- Return-statements are usually collected in one place (in the exit vertex) so a return then is a branch to the exit vertex.
- Infinite loops can be given a "fake" conditional branch (which is always false) in order to create a path to exit.
- In the optimization Dead Code Elimination it's important that every vertex is on a path to e.

Sets and relations

- Assume S and T are sets.
- The Cartesian product $S \times T$ is the set $\{(a,b)|a \in S \land b \in T\}$.
- Any subset T of $S \times S$ is a relation on S.
- T is reflexive iff $\forall a \in S, (a, a) \in T$.
- T is irreflexive iff $\forall a \in S, (a, a) \notin T$.
- T is symmetric iff $(a, b) \in T \Rightarrow (b, a) \in T$.
- T is asymmetric iff $(a,b) \in T \Rightarrow (b,a) \notin T$.
- T is antisymmetric iff $(a, b) \in T \land (b, a) \in T \Rightarrow a = b$.
- T is transitive iff $(a,b) \in T \land (b,c) \in T \Rightarrow (a,c) \in T$.
- A relation which is reflexive, antisymmetric and transitive is called a partial order.
- In a total order such as the integers all elements can be compared but not in a partial order.

Dominance is a partial order

- Dominance is reflexive. Obvious since v must be on any path to itself.
- Dominance is antisymmetric: if both $u \gg v$ and $v \gg u$ then u = v.
 - Assume first that dominance is not antisymmetric and that u and v dominate each other and they are different vertices.
 - Neither u nor v can be s since s is only dominated by itself.
 - Consider a cycle-free path from s to v. It must include u since $u \gg v$.
 - But since $v \gg u$, we must reach v on that path to u.
 - Now v is twice on the cycle free path which is a contradiction.
 - Hence u = v.
- Dominance is transitive: if $u \gg v$ and $v \gg w$ then $u \gg w$
 - Consider any path from s to w.
 - Since $v \gg w$, v must be on that path.
 - Since $u \gg v$, u must also be on that path.
 - The path was selected arbitrarily which means u is on any such path, i.e. $u \gg w$.

Predecessors of a dominated vertex

- If the edge $(v, w) \in E$ of a graph (V, E) then v is a predecessor of w.
- Consider any two vertices $u, v \in V$ and $u \neq v$. Then we have:
- $u \gg v \iff u \gg p_i$; $\forall p_i \in pred(v)$.

In other words:

- If we want to know if v is dominated by u, we can check if all predecessors of v are dominated by u.
- Then, to find which vertices dominate v, we can check which vertices dominate all predecessors of v, i.e. the intersection of dominators of each predecessor. See below.
- But let us first prove the above statement.

Predecessors of a dominated vertex, continued

Let us consider the \Rightarrow direction first: $u \ge v \Rightarrow u \ge p_i$; $\forall p_i \in pred(v)$.

- Assume the contrary, that there exists a predecessor p_i of v which is not dominated by u.
- Then there exists a path $p = (w_0, w_1, w_2, ..., w_k)$ from $s = w_0$ to $p_i = w_k$ which does not include u.
- But then there exists a path $(w_0, w_1, w_2, ..., w_k, w_{k+1})$ from $s = w_0$ to $v = w_{k+1}$ which does not include u, but this is impossible since $u \ge v$.
- Hence, u must dominate every predecessor of v.

if not $u \gg 2$ then it cannot be true that $u \gg v$ u must dominate every predecessor of v to be able to dominate v.

Predecessors of a dominated vertex, continued

Let us then consider the \Leftarrow direction: $u \geq v \Leftarrow u \geq p_i$; $\forall p_i \in pred(v)$.

- If *u* dominates every predecessor of a vertex *v* then *u* must also dominate *v* itself.
- Assume the contrary that there exists a path from s to v which does not include u.
- The second last vertex on that path is a predecessor p_i of v.
- But u dominates every p_i and therefore u must be on the selected path. A contradiction which means $u \ge v$.

0 1 2 S

Since u dominates every p_i it must be on every path to v and therefore dominate v.

Dominance relation

- Dominance is either computed to say which vertices dominate v,
- or, "what does *u* dominate" ? (expressed as descendants in a tree)
- We will first look at the first, i.e. computing dom(v)
- Recall: pred(v) and succ(v) are sets of *immediate* predecessors and successors, *one* arc from v.

Computing the dominators of each vertex

```
procedure compute dominance
    dom(s) \leftarrow \{s\}
    for each w \in V - \{s\} do
        dom(w) \leftarrow V
    change ← true
    while change do
         change ← false
        for each w \in V - \{s\} do
             old \leftarrow dom(w)
             dom(w) \leftarrow \{w\} \cup \begin{cases} f \\ p \in pred(w) \end{cases} dom(p)
             if old \neq dom(w)
                  change ← true
```

end

An Example Control Flow Graph 1(3)

$$dom(w) \leftarrow \{w\} \cup \bigcap_{p \in pred(w)} dom(p)$$

vertex	init.	1st iter.
0	{0}	{0} = { 0 }
1	V	$\{1\} \cup \{0\} = \{0,1\}$
2	V	$\{2\} \cup \{0,1\} = \{0,1,2\}$
3	V	$ \{3\} \cup (\{0,1,2\} \cap \{0,1\}) = \{0,1,3\} $
4	V	$\{4\} \cup \{0,1,3\} = \{0,1,3,4\}$
5	V	$\mid \{5\} \cup (\{0,1,3,4\} \cap V) = \{0,1,3,4,5\} \mid$
6	V	$\{6\} \cup \{0,1,2\} = \{0,1,2,6\}$
7	V	$\{7\} \cup \{0,1,2,6\} = \{0,1,2,6,7\}$

2016

An Example Control Flow Graph 2(3)

$$dom(w) \leftarrow \{w\} \cup \bigcap_{p \in pred(w)} dom(p)$$

vertex	1st iter.	2nd iter.
0	{0}	same
1	$\{0,1\}$	same
2	$\{0, 1, 2\}$	same
3	$\{0, 1, 3\}$	same
4	$\{0, 1, 3, 4\}$	same
5	$\{0,1,3,4,5\}$	$\{5\} \cup (\{0,1,3,4\} \cap \{0,1,2,6,7\})$
6	$\{0, 1, 2, 6\}$	same
7	$\{0,1,2,6,7\}$	same

After the third iteration also $dom(5) = \{0, 1, 5\}$ will remain the same and the algorithm terminates.

An Example Control Flow Graph 3(3)

$$dom(w) \leftarrow \{w\} \cup \bigcap_{p \in pred(w)} dom(p)$$

vertex	3rd iter. dom(w)
0	{0}
1	$\{0,1\}$
2	$\{0, 1, 2\}$
3	$\{0, 1, 3\}$
4	$\{0, 1, 3, 4\}$
5	$\{0, 1, 5\}$
6	$\{0, 1, 2, 6\}$
7	$\{0, 1, 2, 6, 7\}$

Immediate dominators

- The set dom(w) is a total order.
- In other words: if $u, v \in dom(w)$ then either $u \gg v$ or $v \gg u$.
- We can order all vertices in dom(w) to find the "closest" dominator of w.
- First let $S \leftarrow dom(w) \{w\}$.
- Consider any two vertices in S.
- Remove from S the one which dominates the other. Repeat.
- The only remaining vertex in S is the **immediate dominator** of w.
- We write the immediate dominator of w as idom(w).
- Every vertex, except s, has a unique immediate dominator.
- We can draw the immediate dominators in a tree called the dominator tree, abbreviated DT.

The Dominator Tree of Example CFG 1(3)

vertex	$dom(w) - \{w\}$	idom(w)	how to find idom
0	Ø	_	has no idom
1	{0}	0	only 0
2	$\{0,1\}$	1	remove 0
3	$\{0,1\}$	1	remove 0
4	$\{0, 1, 3\}$	3	remove 0,1
5	$\{0,1\}$	1	remove 0
6	$\{0, 1, 2\}$	2	remove 0,1
7	$\{0, 1, 2, 6\}$	6	remove 0,1,2

The Dominator Tree of Example CFG 2(3)

W	idom(w)
0	-
1	0
2	1
3	1
4	3
5	1
6	2
7	6

The Dominator Tree of Example CFG 3(3)

The children of a vertex in the DT are a set (and not ordered).

How to construct the dominator tree

- Assume we know the idom(w) of each vertex (except s).
- How should we construct the DT?

```
• typedef struct vertex_t vertex_t;
struct vertex_t {
     vertex_t* idom;
     vertex_t* domchild;
     vertex_t* domsibling;
};
```

- Of course both domchild and domsibling initially are null pointers.
- Suppose you have just computed idom(w) and have a pointer to w.
- How do you link it into the DT without using any conditional branch instruction?

Link w into DT

 Don't check for the case of domchild or domsibling being a null pointer...

```
w->domsibling = w->idom->domchild;
w->idom->domchild = w;
```

Summary so far

- The iterative algorithm we saw is an example of iterative dataflow analysis.
- Dataflow analysis concerns the flow of values but the technique is identical to what we saw.
- The sets are represented as bit-vectors.
- Usually about three iterations suffice.
- It doesn't matter for correctness in which order we inspect the vertices in each iteration but to improve the speed of the compiler, there are preferences (see below).
- We will see an algorithm which is faster and constructs the dominator tree directly.
- Given the set dom(w) it takes (as we saw) additional effort to construct the dominator tree.

In which order should we process the vertices?

- The information flows forward so it is better to have processed the predecessors of a vertex w before w itself is processed.
- We put each vertex in an array in reverse post order.

Reverse post order

- An array is allocated to hold each vertex.
- The array will be processed with increasing indexes.
- The vertices are put into the array starting at the highest index.
- The last vertex put into the array is s at index 0.
- Do a depth first search as follows
- When a vertex has no unvisited successor, put it at the last free position in the array.
- 0 1 2 6 7 3 4 5
- This way we will have processed both 4 and 7 before computing dom(5).

2016

Computing idom and DT faster

- The LT algorithm was completed in 1979 by Robert Tarjan and his PhD student Thomas Lengauer at Stanford.
- Thomas Lengauer is the brother of Christian Lengauer whose group in Passau has developed many high order transformations (and visited Lund in 1992).
- The LT algorithm calculates the immediate dominator and is based on insights from depth first search.
- We will focus on understanding the key ideas of the algorithm.

The Semi-Dominator of a Vertex

- The semi-dominator of a vertex is much easier to compute than the immediate dominator and is almost always identical to the immediate dominator.
- We will soon define the semi-dominator.
- The idea is to find the semi-dominator which is easy, and then determine whether the semi-dominator also is the immediate dominator.
- If it's not, then the immediate dominator of w is the immediate dominator of a certain ancestor between w and sdom(w) in the DFS tree (explained below).

Definition of the Semi-Dominator of a Vertex

- First a depth first search numbering is performed on the CFG. This is shown to the left.
- When we write u < v we mean that u has a lower depth first search number than v.
- The semi-dominator of a vertex w is the smallest vertex v such that there is a path $(v_0, v_1, v_2, ..., v_k)$ from $v = v_0$ to $w = v_k$ with $v_i > w$ for $1 \le i \le k-1$, and is written sdom(w).
- For example sdom(5) = 2 since the path (2, 6, 7, 5) starts with 2 which is lower than 4 in the alternative path (4, 5).
- Please start with the left most edge during DFS search on the exam!

More about Semi-Dominators and Immediate Dominators

- Consider again vertex 5. We have sdom(5) = 2 and idom(5) = 1.
- Assume we know how to compute the semi-dominators — it's not very difficult — we only have to find a suitable path.
- What is the "problem" which is the root cause that makes the semi-dominator can be different from the immediate dominator?
- Answer: there is an edge from a vertex coming in from "outside" and between the vertex 5 and the semi-dominator, i.e. the edge (1,3).
- This is the key problem the algorithm has to deal with.
- Let us next find a way to compute the semi-dominators.

2016

Computing the Semi-Dominators

- Recall: the semi-dominator of a vertex w is the smallest vertex v such that there is a path $(v_0, v_1, v_2, ..., v_k)$ from $v = v_0$ to $w = w_k$ with $v_i > w$ for $1 \le i \le k-1$, and is written sdom(w).
- We can see there can be multiple candidates for being the semi-dominator.
- Any path to w obviously must end with an edge to w from a predecessor of w.
- All predecessors of w are searched for a possible candidate path and semi-dominator.
- Note that the path may consist of only one edge.
- How far should we search backwards???

2016

Computing the Semi-Dominators

- How far should we search backwards???
- Recall we want to find a path $(v = w_0, w_1, w_2, ... w_{k-1}, w_k = w)$ where $w_i > w$ for $1 \le i < k$.
- Therefore we should only search backwards on vertices with a higher number than w.
- This is achieved as follows: the Lengauer-Tarjan algorithm first processes each vertex in decreasing depth-first search number.
- We may only search backwards from one vertex to its ancestor in the depth first search tree.
- The function to find a semi-dominator candidate is called eval and it finds the ancestor with the least semi-dominator.

Link and Eval

- To limit the search backwards (or actually upwards in the depth first search tree) a separate attribute identical to the parent in the depth first search tree is maintained.
- When a vertex w has been processed, its attribute w->parent is copied to w->ancestor by the function link.
- The function eval uses the w->ancestor to search upwards in the depth first search tree.
- The ancestor with least semi-dominator number is returned from eval.
- For all predecessors p_i of w, the smallest return value from $eval(p_i)$ is the semi-dominator of w.

Sdom and Idom

- To determine whether the semi-dominator is the immediate dominator, a search from w to sdom(w) is performed following the w->ancestor attributes.
- First of all, the sdom(w) must be an ancestor of w in the DFS tree.
- If any ancestor v in that search has sdom(v) which is lower than sdom(w) then there is an edge which makes it impossible for sdom(w) to be idom(w).
- Therefore, a vertex w is put in a set, called the bucket, in sdom(w).
- The bucket is emptied when a child of sdom(w) is processed.
- When the bucket is emptied, the search from each w in the bucket towards sdom(w) is performed.

2016

Link and Eval

- In the search mentioned on the previous slide, if no ancestor with a lower semi-dominator was found, then we know that idom(w) = sdom(w).
- Otherwise, let *u* be the ancestor with least semi-dominator found in the search.
- It turns out that idom(w) = idom(u);
- But we don't yet know idom(u) and therefore must record u as an attribute of w.
- It's put in the attribute w->idom.
- After all vertices have been processed and found their sdom, the vertices are processed again with increasing DFS number to determine the immediate dominator unless already known.

Summary of notation

G	Control flow graph CFG .
T	A depth-first spanning tree of G .
DT	The dominator tree of G .
W	The depth-first search number of vertex w in T .
V < W	v has a lower depth-first search number than w .
$V \stackrel{*}{\rightarrow} W$	v is an ancestor of w in T .
$V \xrightarrow{+} W$	v is a proper ancestor of w : $v \stackrel{*}{\to} w$ and $v \neq w$.
parent(w)	parent of w in T .
ancestor(w)	also parent of w in T .

The Lengauer-Tarjan Algorithm 1(6)

```
int
                               /* Depth-first search number. */
             df
procedure dfs(v, vertex[])
    dfnum(v) \leftarrow df
    vertex[df] \leftarrow v
    sdom(v) \leftarrow v
    ancestor(v) \leftarrow null
    df \leftarrow df + 1
    for each w \in succ(v) do
        if (sdom(w) = null) {
             parent(w) \leftarrow v
             dfs(w)
```

2016

The Lengauer-Tarjan Algorithm 2(6)

```
function eval(v)

vertex u

/* Find ancestor with least sdom. */

u \leftarrow v

while (ancestor(v) \neq nil) do

if (dfnum(sdom(v)) < dfnum(sdom(u)))

u \leftarrow v

v \leftarrow ancestor(v)

return u
```

procedure
$$link(v, w)$$

ancestor(w) $\leftarrow v$

2016

The Lengauer-Tarjan Algorithm 3(6)

```
procedure dominators(V, s)
    int
    int n = |V|
    vertex vertex[n]
    /* Step 1. */
    for each w \in V do
        sdom(w) \leftarrow nil
        bucket(w) \leftarrow \emptyset
    df \leftarrow 0
    dfs(s)
```

The Lengauer-Tarjan Algorithm 4(6)

```
for (i \leftarrow n-1; i > 0; i \leftarrow i-1) do {
    /* Step 2. */
    w \leftarrow vertex[i]
    for each v \in pred(w) do {
        u \leftarrow eval(v)
        if (dfnum(sdom(u)) < dfnum(sdom(w)))
            sdom(w) \leftarrow sdom(u)
    add w to bucket(sdom(w))
    link(parent(w), w)
```

2016

The Lengauer-Tarjan Algorithm 5(6)

```
/* Step 3. */
for each v \in bucket(parent(w)) do {
    remove v from bucket(parent(w))
    u \leftarrow eval(v)
    if (dfnum(sdom(u)) < dfnum(sdom(v)))
        idom(v) \leftarrow u
    else
        idom(v) \leftarrow parent(w)
}
```

2016

The Lengauer-Tarjan Algorithm 6(6)

```
/* Step 4. */
for (i \leftarrow 1; i < n; i \leftarrow i + 1) {
w \leftarrow vertex[i]
if (idom(w) \neq sdom(w))
idom(w) \leftarrow idom(idom(w))
}
idom(s) \leftarrow -1
```

Example of Lengauer-Tarjan Algorithm: After Step 1

- After Initialization in Step 1.
- sdom(w) = w

vertex	parent	bucket	ancestor	sdom	idom
0	_	\emptyset	-	0	-
1	0	Ø	-	1	-
2	1	Ø	-	2	-
3	2	Ø	-	3	-
4	3	Ø	-	4	-
5	4	Ø	-	5	-
6	2	Ø	_	6	_
7	6	Ø	-	7	_

Processing Vertex 7: Step 2

- The only predecessor of w = 7 is v = 6 which evaluates to u = 6.
- sdom(w = 7) becomes 6, and 7 is added to the bucket of its sdom.

vertex	parent	bucket	ancestor	sdom	idom
0	_	Ø	-	0	_
1	0	Ø	-	1	_
2	1	Ø	-	2	_
3	2	Ø	-	3	_
4	3	Ø	-	4	_
5	4	Ø	-	5	_
6	2	{7}	-	6	_
7	6	Ø	6	6	_

Processing Vertex 7: Step 3

- Now the only vertex v in the bucket of parent(7) = 6 is inspected.
- We set idom(7) = 6.

vertex	parent	bucket	ancestor	sdom	idom
0	-	Ø	_	0	_
1	0	Ø	-	1	_
2	1	Ø	-	2	-
3	2	Ø	-	3	-
4	3	Ø	-	4	-
5	4	Ø	-	5	-
6	2	Ø	-	6	_
7	6	Ø	6	6	6

Processing Vertex 6: Step 2

- The only predecessor of w = 6 is v = 2 which evaluates to u = 2.
- sdom(w = 6) becomes 2, and 6 is added to the bucket of sdom(6) = 2.

vertex	parent	bucket	ancestor	sdom	idom
0	_	Ø	-	0	-
1	0	Ø	-	1	_
2	1	{6}	-	2	-
3	2	Ø	-	3	_
4	3	Ø	-	4	_
5	4	Ø	-	5	-
6	2	Ø	2	2	_
7	6	Ø	6	6	6

Processing Vertex 6: Step 3

• The bucket of 2 is emptied and idom(6) is set to 2.

vertex	parent	bucket	ancestor	sdom	idom
0	-	Ø	-	0	_
1	0	Ø	-	1	-
2	1	Ø	-	2	-
3	2	Ø	-	3	-
4	3	Ø	-	4	-
5	4	Ø	-	5	-
6	2	Ø	2	2	2
7	6	Ø	6	6	6

Processing Vertex 5: Step 2

- 5 has two predecessors, 4 and 7.
- After having evaluated 4, sdom(w = 5) tentatively becomes 4.
- Then eval(7) = 6 and sdom(6) = 2, so the final value of sdom(w = 5) becomes 2, and 5 is added to the bucket of 2.

vertex	parent	bucket	ancestor	sdom	idom
0	_	Ø	-	0	-
1	0	Ø	_	1	_
2	1	{5}	-	2	-
3	2	Ø	-	3	_
4	3	Ø	-	4	_
5	4	Ø	4	2	_
6	2	Ø	2	2	2
7	6	Ø	6	6	6

Processing Vertex 4: Step 2

• We find sdom(4) = 3, and add 4 to the bucket of 3.

vertex	parent	bucket	ancestor	sdom	idom
0	-	Ø	-	0	-
1	0	Ø	-	1	_
2	1	{5}	-	2	_
3	2	{4}	-	3	-
4	3	Ø	3	3	-
5	4	Ø	4	2	-
6	2	Ø	2	2	2
7	6	Ø	6	6	6

Processing Vertex 4: Step 3

• We set idom(4) = 3.

vertex	parent	bucket	ancestor	sdom	idom
0	_	Ø	_	0	-
1	0	Ø	-	1	-
2	1	{5}	-	2	_
3	2	Ø	-	-	-
4	3	Ø	3	3	3
5	4	Ø	4	2	-
6	2	Ø	2	2	2
7	6	Ø	6	6	6

Processing Vertex 3: Step 2

• We find sdom(3) = 1, and add 3 to the bucket of 1.

vertex	parent	bucket	ancestor	sdom	idom
0	_	Ø	-	0	-
1	0	{3}	-	1	_
2	1	{5}	-	2	-
3	2	Ø	2	1	_
4	3	Ø	3	3	3
5	4	Ø	4	2	-
6	2	Ø	2	2	2
7	6	Ø	6	6	6

Processing Vertex 3: Step 3

- Now we will empty the bucket of 2 which contains
 5.
- eval(5) = 3 and sdom(3) = 1 < 2, which says there is a path from 0 to 5 which does not include 2. We therefore set idom(5) = 3.

vertex	parent	bucket	ancestor	sdom	idom
0	_	Ø	_	0	_
1	0	{3}	-	1	_
2	1	Ø	-	2	_
3	2	Ø	2	1	-
4	3	Ø	3	3	3
5	4	Ø	4	2	3
6	2	Ø	2	2	2
7	6	Ø	6	6	6

Processing Vertex 2: Step 2

• We find sdom(2) = 1, and add 2 to the bucket of 1.

vertex	parent	bucket	ancestor	sdom	idom
0	_	Ø	-	0	_
1	0	{2,3}	-	1	_
2	1	Ø	1	1	-
3	2	Ø	2	1	-
4	3	Ø	3	3	3
5	4	Ø	4	2	3
6	2	Ø	2	2	2
7	6	Ø	6	6	6

Processing Vertex 2: Step 3

 Now we will empty the bucket of 1 which contains 2 and 3, both of which find 1 to be their immediate dominator.

vertex	parent	bucket	ancestor	sdom	idom
0	_	Ø	-	0	_
1	0	Ø	-	1	_
2	1	Ø	1	1	1
3	2	Ø	2	1	1
4	3	Ø	3	3	3
5	4	Ø	4	2	3
6	2	Ø	2	2	2
7	6	Ø	6	6	6

Processing Vertex 1: Step 2

• Finally, we find sdom(1) = 0.

vertex	parent	bucket	ancestor	sdom	idom
0	-	Ø	-	0	-
1	0	Ø	0	0	0
2	1	Ø	1	1	1
3	2	Ø	2	1	1
4	3	Ø	3	3	3
5	4	Ø	4	2	3
6	2	Ø	2	2	2
7	6	Ø	6	6	6

After Step 4

vertex	parent	bucket	ancestor	sdom	idom
0	_	Ø	-	0	_
1	0	Ø	0	0	0
2	1	Ø	1	1	1
3	2	Ø	2	1	1
4	3	Ø	3	3	3
5	4	Ø	4	2	1
6	2	Ø	2	2	2
7	6	Ø	6	6	6