
Contents of Lecture 12

Instruction Scheduling Basics

List Scheduling

Modulo Scheduling

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 1 / 32

js@cs.lth.se


Instruction Scheduling Example

The purpose of instruction scheduling is to improve performance by
reducing the number of pipeline stalls suffered during execution.
The following example illustrates the concept, where the right column
is the scheduled code.
Due to instructions only are scheduled within one basic block, only a
limited improvement is achieved — the fsub and stf are not helped
at all.

ldf t2,a,t1
ldf t3,b,t1
fadd t4,t2,t3
ldf t5,c,t1
ldf t6,d,t1
fmul t7,t5,t6
fsub t8,t3,t7
stf t8,e,t1

ldf t2,a,t1
ldf t3,b,t1
ldf t5,c,t1
ldf t6,d,t1
fadd t4,t2,t3
fmul t7,t5,t6
fsub t8,t3,t7
stf t8,e,t1

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 2 / 32

js@cs.lth.se


Instruction Scheduling vs. Register Allocation

The goal of instruction scheduling is to reduce pipeline stall and this
is achieved by separating the producer and consumer.

This separation makes it more difficult to perform register allocation.

Question: Which of instruction scheduling and register allocation
should be performed first?
Answer: Instruction scheduling because register allocation would
create unnecessary constraints for the scheduler, and advanced
instruction scheduling would be seriously limited with already assigned
registers.

If register allocation results in spill code, the instruction scheduler is
usually run a second time in order to separate the load instructions
from the uses of the loaded register.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 3 / 32

js@cs.lth.se


Register Pressure of Different Schedules

The left schedule needs three floating point registers and the right
schedule one more.

ldf f2,ra,ri
ldf f3,rb,ri
fadd f2,f2,f3
ldf f3,rc,ri
ldf f4,rd,ri
fmul f3,f3,f4
fsub f2,f2,f3
stf f2,re,ri

ldf f2,ra,ri
ldf f3,rb,ri
ldf f4,rc,ri
ldf f5,rd,ri
fadd f2,f2,f3
fmul f4,f4,f5
fsub f2,f2,f4
stf f2,re,ri

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 4 / 32

js@cs.lth.se


Data Dependencies

Data dependencies constrain how instructions can be scheduled.

When performing optimizations on SSA Form we used both the data
dependence graph (eg for Scalar Replacement of Array References)
and the SSA graph.

Instruction scheduling is performed after translation from SSA Form
and on low level code which is close to the final machine code.

In addition to the data dependence graph, dependencies due to scalar
variables and accesses to memory through unknown addresses are
created.

A method to find these dependencies will be shown later.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 5 / 32

js@cs.lth.se


Rewriting Expressions for Increased Parallelism

Consider the expression a + b + c + d.

How it must be evaluated depends on the data type and source
language.

In C (and other languages) addition is left-associative which means
the expression should be evaluated as ((a + b) + c) + d.

Due to the sequential execution it takes at least three clock cycles
(and more for floating point).

If the compiler knows that it can ignore the effects of overflow (either
due to the type is unsigned or two’s complement representation is
used), it can rewrite it as (a + b) + (c + d).

On a superscalar processor two additions can be performed
concurrently.

Programmers are NOT allowed to think they can ignore overflow
other than for unsigned integers (if the computation still makes sense
with the overflow, that is).

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 6 / 32

js@cs.lth.se


List Scheduling

The most fundamental instruction scheduling technique is called list
scheduling and schedules one basic block at a time.

First an instruction level data dependence graph is built. This graph
can be constructed by scanning a basic block either forwards or
backwards.

The graph consists of vertices which are instructions and directed arcs
which constrain the scheduling order of two instructions.

The source vertex must execute before the target vertex.

Once the graph has been constructed the list scheduler maintains a
set of candidate instructions which are the instruction which can be
scheduled next, because all instructions they depend on have already
been scheduled.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 7 / 32

js@cs.lth.se


List Scheduler Goal

The goal of the list scheduler is to minimize the number of clock
cycles required to execute the basic block.

As this problem is NP-complete, an approximation is found as follows:
each vertex is assigned a priority in some way, and the highest priority
vertex i of the candidates is scheduled next.

Then any successor vertex s of i with no predecessor that has not yet
been scheduled is moved to the set of candidates.

This procedure is repeated until the set of candidates is empty.

The interesting problem is to select the priority function using clever
heuristics.

Changing heuristics can change the execution time by several percent.

In one version of the IBM C/C++/FORTRAN compiler each block
was scheduled three times with different heuristics and the best
schedule was used.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 8 / 32

js@cs.lth.se


Storage Resources

The instruction scheduler builds a graph based on the definitions and
uses of storage resources, e.g. variables, registers, or all of memory.

Attribute Description
def (r) The instruction which most recently modified r while

scanning backwards, or null (denoted ⊥).

uses(r) The set of instructions which use the current value of r .

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 9 / 32

js@cs.lth.se


Defining a Resource

procedure define resource (r , s)

/* r is a resource and s is an instruction. */

if (def (r) 6= ⊥) {
add edge (s, def (r), OUTPUT)
delete def (r) from candidates

}

def (r)← s

for each u ∈ uses (r) do {
add edge (s, u, TRUE)
delete u from candidates

}

uses (r)← ∅
end

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 10 / 32

js@cs.lth.se


Using a Resource

procedure use resource (r , s)
add s to uses (r)
if (def (r) 6= ⊥ and def (r) 6= s)

delete def (r) from candidates
add edge (s, def (r), ANTI)

end

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 11 / 32

js@cs.lth.se


Collecting Candidate Instructions

procedure collect candidates (v)

/* v is a basic block. */

for each resource r do {
uses (r)← ∅
def (r)← ⊥

}
candidates← ∅
for each instruction s in v in reverse order do {

for each resource r defined by s do
define resource (r , s)

for each resource r used by s do
use resource (r , s)

add s to candidates
}

end

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 12 / 32

js@cs.lth.se


List Scheduling

procedure list sched
for each vertex v in G do

collect candidates (v)
cycle← 0
while (candidates 6= ∅) do

for each s ∈ candidates do
update earliest (s)
compute delay (s)

max delay cand← ∅
earliest cand← ∅
for each s ∈ candidates do

if (delay (s) = max delay)
add S to max delay cand
if (earliest (s) < cycle)

add S to earliest cand
if (earliest cand 6= ∅)

take s from earliest cand using heuristics
else

take s from max delay cand using heuristics
delete s from candidates
schedule s as next statement in v
cycle← cycle + 1

end

Incrementing the cycle after each scheduled instruction assumes a
single-issue pipeline.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 13 / 32

js@cs.lth.se


Modulo Scheduling

Consider the following loop and assume there are true dependencies
from A to B and from B to C .

void h()

{

int i;

for (i = 0; i < 100; ++i) {

A;

B;

C;

}

}

Due to list scheduling only works with one basic block, it cannot
improve this loop.
Such loops are of course extremely common.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 14 / 32

js@cs.lth.se


Modulo Scheduling the Loop

Let us take instructions from three iterations and interleave them.

First we need to execute instructions from the first two iterations in a
prologue.

cycle i ii iii
0 A0
1 B0 A1

2 C0 B1 A2
3 A3 C1 B2
4 B3 A4 C2

5 C3 B4 A5
6 A6 C4 B5
7 B6 A7 C5

8 C6 B7
9 C7

Assume for illustration only 8 iterations are executed.

For example A3 denotes instruction A in iteration 3.

After a steady-state with 2× 3 iterations there is an epilogue.

Consider instruction B3. While it waits for A3, the CPU can also
execute C1 and B2, assuming a pipelined superscalar CPU.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 15 / 32

js@cs.lth.se


List Scheduled Execution

i = 0

i = 1

i = 2

i = 3

Each iteration is completed
before the next starts.

The height of an iteration is the
number of clock cycles it takes.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 16 / 32

js@cs.lth.se


Parallelism with Modulo Scheduling

i = 0
i = 1

i = 2
i = 3

i = 4
i = 5

i = 6
i = 7

i = 8
i = 9

i = 10
i = 11

A new iteration is started before
the current has completed.

We wish to start the next
iteration as early as possible.

If we start the next iteration the
same clock cycle, we need a
multicore with one core per loop
iteration.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 17 / 32

js@cs.lth.se


The Initiation Interval

i = 0

i = 1

The initiation interval,
abbreviated II, is the number of
clock cycles between the start of
two iterations.

The II is limited by
1 Data dependencies
2 Available hardware resources

A maximum II is determined by
doing a normal list schedule of
the loop body.

A minimum II is computed from
the available resources and
required resources in the loop,
and the data dependencies.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 18 / 32

js@cs.lth.se


Performing Modulo Scheduling

The modulo scheduler then tries to find the smallest II which results
in a valid schedule, by trying each value of II starting from the
minimum II, and incrementing it by one.

All variables defined before being used in each loop iterations are
expanded to different variables for each iteration.

Then the loop body is duplicated and adapted for the proper iteration.

A prologue and an epilogue is also generated.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 19 / 32

js@cs.lth.se


Data Dependence Analysis for Modulo Scheduling

There are two data dependence analyzes done for modulo scheduling:
1 Instruction level — as we saw for list scheduling.
2 Loop level — as we saw in lecture F10.

There is one modification: in addition to the type (true, anti, or
output), dependencies for modulo scheduling are of the form (p, d),
where p is the dependence distance (i.e. iteration difference) and d is
the delay in clock cycles.

By delay is meant the time the instructions should be separated to
avoid pipeline stalls.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 20 / 32

js@cs.lth.se


Scheduling Instructions

Let σ(v) denote the clock cycle a certain instruction v is scheduled.
With a dependence (p, d) from instruction u to instruction v , and an
initiation interval II , to avoid pipeline stalls we need to satisfy:

σ(v)− σ(u) + p II ≥ d (1)

Additionally there must be sufficient hardware resources available in
each clock cycle.
Assume for simplicity an instruction only needs one resource each
clock cycle (e.g. a certain stage in a pipelined functional unit).
Then for each clock cycle i the instruction executes (counting from
zero in e.g. in the instruction decode stage) there must be such a
resource available in the clock cycle given by:

(σ(v) + i) mod II (2)

If no value for σ(v) can be found which satisfies all constraints, the
initiation interval must be increased, and the scheduling be repeated.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 21 / 32

js@cs.lth.se


Modulo Scheduling Algorithm

We have now seen the essential parts of the modulo scheduling.

There was in the 1980’s a debate regarding which hardware features
were needed for efficient software pipelining (e.g. rotating register
files).

The problem was solved completely in software by Monica Lam in her
PhD thesis from Carnegie Mellon University.

Her algorithm is described in her book ”A Systolic Array Optimizing
Compiler”, and is implemented in several compilers, including in SGI’s
compiler (now called Open64).

An interesting study was performed that compared an optimal
scheduler with the modulo scheduler in the SGI compiler, and
concluded that their modulo scheduler almost always produced
optimal code.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 22 / 32

js@cs.lth.se


Uses of the Java Virtual Machine

The Java byte code is used for several languages other than Java:

Scala
Ruby
Python
Lisp
Scheme

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 23 / 32

js@cs.lth.se


HotSpot

The HotSpot virtual machine originates from the Strongtalk virtual
machine for the Smalltalk language.

It was used by Sun research for the Self language.

The first release as a Java virtual machine was in 1999.

It is the default virtual machine from Sun/Oracle since Java 1.3.

Hotspot is written in C++ some assembler, and consist of 250,000
lines.

Due to HotSpot is partly written in assembler it has triggered the
IcedTea project based on HotSpot but without assembler code.
Available for example for Power and ARM processors and others.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 24 / 32

js@cs.lth.se


The Java Byte Code Machine Model

The JVM is a stack machine.

This means a byte code instruction pops operands from a stack and
pushes the result back to the stack.

At about the same time as the JVM was designed Bell Labs also
designed a virtual machine (for their Inferno operating system) which
instead is a register-based virtual machine.

Register-based virtual machines are easier to produce faster code for,
and therefore HotSpot translates the byte code to that.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 25 / 32

js@cs.lth.se


HotSpot JVM Execution

Execution of a method starts by interpreting the byte code and after
the execution count of the method has reached a limit, optimization
is used.

The whole method is optimized.

Different optimization levels are used depending on whether the JVM
is for desktops (clients) or servers.

Servers are expected to run for longer time and enables more
time-consuming optimizations.

In addition to the method invocation counter, there are loop iteration
counters which also can trigger optimization.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 26 / 32

js@cs.lth.se


Deoptimization

The optimization can make guesses and perform better optimizations
as long as the guesses are correct.

For this, runtime checks are inserted to validate the guesses.

If a guess was wrong, the method is deoptimized and interpreted
again, but can be optimized later.

Deoptimization can also be needed after a new class has been loaded.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 27 / 32

js@cs.lth.se


Client Optimization

First the control flow graph of a method is constructed by inspecting
the byte codes.

Then the instructions of a basic block are created by simulating the
the JVM execution stack.

The stack-based execution model of the JVM is thus replaced with
the SSA representation.

This is called the HIR representation, or the high-level intermediate
representation.

Client JVM optimizations on SSA Form include

Constant folding
Value numbering
Inlining

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 28 / 32

js@cs.lth.se


Low-level intermediate representation

Not SSA Form

Essentially symbolic assembler code, as in Bell Labs’ Inferno

Unlimited number of machine registers before register allocation

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 29 / 32

js@cs.lth.se


Server HotSpot JVM Execution

The server JVM also uses SSA Form.

In addition to the control flow graph, control and data dependencies
are analyzed.

Additional optimizations include:

Constant propagation
Dead code elimination
Instruction scheduling
Graph coloring register allocation
Loop unrolling
Loop invariant code motion

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 30 / 32

js@cs.lth.se


Additional Resources

The news group comp.compilers is usually interesting.

They have a weekly posted jobs which show interesting trends.

Knowledge about GCC, Open64, and LLVM are safe bets for
interesting jobs in optimizing compilers.

Note that open64.net is no longer up.

The site www.compilerjobs.com is also useful for following trends.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 31 / 32

js@cs.lth.se


A Sample of Requirements for a Career

From: "Welch, Susan (c)"

Subject: Compiler engineer at MIPS (Sunnyvale CA)

Date: Wed, 29 Sep 2010 18:33:02 +0000

MIPS has an opening in its Sunnyvale, California headquarters for a Senior

Compiler Engineer.

Primary responsibilities:

* research, develop and implement MIPS cores specific optimizations.

* Interact with processor architects and designers.

* manage relationship with the toolchain product team.

* provide compiler technology perspective and guidance to technical

discussions at large.

Skills:

* Must posses extensive knowledge and experience in modern compiler

technology.

* modern SSA based scalar optimization.

o code-motion

o dead-code elimination

o loop transformation, etc.

* register allocation.

* scheduling.

* Knowledge of MIPS architecture a plus.

* Knowledge of and experience with the GNU toolchain and with the FSF

community is highly desirable.

* Excellent C and assembler skills.

* Ability to interact with members of a diverse team HW, SW apps,

benchmarking.

* Good communication skills, self starter, mentor others.

Education:

MSCS or equivalent

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2016 32 / 32

js@cs.lth.se

