
Contents of Lecture 11

Unimodular Transformations

Inner Loop Parallelization

SIMD Vectorization

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 1 / 25

js@cs.lth.se

Unimodular Transformations

A unimodular transformation is a loop transformation completely
expressed as a unimodular matrix U.

A loop nest L is changed to a new new loop nest LU with loop index
variables:

K = IU
I = KU−1

The same iterations are executed but in a different order.

A new iteration order might make parallel execution possible.

Before generating code for the new loop, the loop bounds for K must
be computed from the original bounds:

p0 ≤ IP
IQ ≤ q0

}

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 2 / 25

js@cs.lth.se

Computing the New Index Variables

With

p0 ≤ IP
IQ ≤ q0

}
(1)

I = KU−1 (2)

We use Fourier-Motzkin elimination to find the loop bounds from

p0 ≤ KU−1P
KU−1Q ≤ q0

}
(3)

The bounds are found starting with k1, k2 etc.

This is the reason why we want to have an invertible transformation
matrix.

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 3 / 25

js@cs.lth.se

New Array References

All array references are rewritten to use the new index variables.

Conceptually we could calculate, at the beginning of each loop
iteration,

I = KU−1

and then use this vector I in the original references, on the form:
x [IA + a0]

We don’t do that of course and instead replace each reference with
x [KU−1A + a0]

Here KU−1A + a0 is be calculated at compile-time.

For instance the lmpcc compiler has a function make_ref which
takes an array reference and a transformation matrix, and produces
new three-address code with the new index variables.

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 4 / 25

js@cs.lth.se

The Distance Matrix

The set of all vectors of dependence distances is represented by the
distance matrix D.

We are free to swap the rows of D since it really is a set of
dependencies.

Unimodular transformations require that all dependencies are uniform,
i.e. with known constants.

Consider a uniform dependence vector d = j− i.

With the K index variables we have dU = jU− iU = dU.

Therefore, given a dependence matrix D and a unimodular
transformation U, the dependencies in the new loop LU become:

DU = DU

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 5 / 25

js@cs.lth.se

Valid Distance Matrices

The sign, lexicographically, of a vector is the sign of the first
nonzero element.

A distance vector can never be lexicographically negative since it
would mean that some iteration would depend on a future iteration.

Therefore row in the new distance matrix DU = DU may be
lexicographically negative.

If we would discover a lexicographically negative row in DU, that loop
transformation is invalid, such as the second row of the following DU:

DU =

(
1 2
−1 1

)

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 6 / 25

js@cs.lth.se

Inner Loop Parallelization

By inner loops is meant all loops except the outermost loop.

We can always find a unimodular matrix through which we can
parallelize the inner loops, but the program might run slower...

To parallelize the inner loops, we need to assure that all loop carried
dependencies are carried at the outermost loop.

In other words, the leftmost column of the distance matrix DU simply
should consist only of positive numbers!

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 7 / 25

js@cs.lth.se

Inner Loop Parallelization Example

Assume we have the distance matrix D defined as:

D =

0 0 2
0 3 −4
0 2 −1
4 0 4

With this distance matrix, no loop can be executed in parallel.

We want a DU with positive first column:

DU =

≥ 1 ? ?
≥ 1 ? ?
≥ 1 ? ?
≥ 1 ? ?

 =

0 0 2
0 3 −4
0 2 −1
4 0 4

 u1 ? ?

u2 ? ?
u3 ? ?

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 8 / 25

js@cs.lth.se

Continued example

Searching for a transformation, we get the following system of
inequalities:

2u3 ≥ 1
3u2 − 4u3 ≥ 1
2u2 − u3 ≥ 1

4u1 + 4u3 ≥ 1

Since there are no upper bounds on ui , there are infinitely many
solutions to this equation. We will choose the smallest integer ui
which satisfies the inequalities.

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 9 / 25

js@cs.lth.se

Continued example

So, u3 is chosen as d1/2e = 1.

Then we proceed with u2, for which there are two inequalities:
u2 ≥ d(1 + 4u3)/3e = 2 and u2 ≥ d(1 + u3)/2e = 1, so u2 is chosen
as the maximum of these, or u2 ← 2.

Finally, u1 ≥ d(1− 4u3)/4e = 0, so u1 ← 0. We get

U =

 0 1 0
2 0 1
1 0 0

and

D×U =

2 0 0
2 0 3
3 2 2
4 0 0

 .

The new loop nest LU thus carries all dependencies in the outermost
loop L1, with the consequence that L2 and L3 can be vectorized.

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 10 / 25

js@cs.lth.se

Continued example

function hyperplane method (D)
/* Group rows with leading element in position r together. */
for (r ← 1; r ≤ m; r ← r + 1) {

Dr ← {d ∈ D : d ≺r 0}
}

for (r ← m; r ≥ 1; r ← r − 1) {
if (Dr = ∅)

ur ← 0
else

ur ← dmaxd∈D{(1− dr+1ur+1 − dr+2ur+2 − ...− dmum)/dr}e+

}

/* now gcd(u1, u2, ..., um) = 1. */
/* and d1u1 + d2u2 + ... + dmum ≥ 1 (d ∈ D). */

u← (u1, u2, ..., um)
k ← the first nonzero element in the sequence um, um−1, ..., u1
let U be an m × m unimodular matrix such that

(1) the first column is u

(2) the kth row is (1, 0, ..., 0)
(3) The matrix obtained by deleting column 1 and row k of U is Im−1

return U
end

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 11 / 25

js@cs.lth.se

SIMD Vectorization of DSP Codes

The following will describe SIMD Vectorization in the lmpcc
compiler, which essentially is similar to that in other compilers.

The vectorizations are done on SSA Form.

The most important steps are data dependence analysis and
identifying expressions suitable for AltiVec SIMD instructions.

Other optimizations such as SSAPRE make it easier to perform
vectorization since certain address calculations are automatically
moved out to the proper location.

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 12 / 25

js@cs.lth.se

An Example: a FIR filter 1(3)

y(n) =
∑n

i=n−LENGTH h(i) · x(i)

LENGTH is the number of past input samples remembered

y(n) is the output at time n — represented as a scalar

x are the input samples — represented as a vector of length L

the coefficients h is also a vector of length L

after one step, x is shifted right one position and a new sample is
stored in x(0)

the main operation is the multiply-add called multiply-accumulate, or
MAC

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 13 / 25

js@cs.lth.se

An example: a FIR filter 2(3)

y(n) =
∑n

i=n−LENGTH h(i) · x(i)

the multiplications can be performed concurrently

we will see later that the accumulation to y(n) can be done
concurrently on AltiVec

moving x right one position is trivial

so why does Hennessy and Patterson have the following pitfall in the
third edition of their computer architecture book ?

”Pitfall: Expecting to get good performance from a compiler for DSPs”
Writing a FIR filter in assembler gives 11.5 times better performance
than using TI’s compiler for the TMS320C54D DSP processor

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 14 / 25

js@cs.lth.se

An example: a FIR filter 3(3)

DSP codes written in C use pointers a lot (intentionally in DSP stone)

The FIR filter from DSP stone used by Hennessy and Patterson:

float y, h[LENGTH], x[LENGTH], *px, *px2, *ph;

px = &x[LENGTH-1]; px2 = &x[LENGTH-2]; ph = &h[LENGTH-1];

y = 0;

for (i = 0; i < LENGTH - 1; i++) {

y += *ph-- * *px ;

*px-- = *px2-- ;

}

y += *ph * *px ;

*px = x0 ;

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 15 / 25

js@cs.lth.se

Another example from DSP stone: N complex updates

for (i = 0 ; i < N ; i++, p_a++)

{

*p_d = *p_c++ + *p_a++ * *p_b++ ;

*p_d++ -= *p_a * *p_b-- ;

*p_d = *p_c++ + *p_a-- * *p_b++ ;

*p_d++ += *p_a++ * *p_b++ ;

}

The TI compiler produces 9.5 times slower code than hand-optimized
assembler

DSP programmers often assume that code should be hand-optimized
for very simple processors and naive compilers

This coding style often confuses compilers

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 16 / 25

js@cs.lth.se

PowerPC/AltiVec SIMD Vector Processor

Available from Freescale and IBM

Based on superscalar PowerPC designs

32 16-byte vector registers

162 new instructions

programmable data prefetch engines

float; signed/unsigned int/short/char both normal and saturated; bool

no double precision floating point

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 17 / 25

js@cs.lth.se

Examples of AltiVec instructions: Vector Permute

vperm vd, va, vb, vc

Permutes the contents of source vectors VA and VB according to VC

Bytes in VA are called 00, 01, 02, ..., 0f

Bytes in VB are called 10, 11, 12 ..., 1f

Eg: if byte k in VC contains 12 then byte 2 of VB is stored in byte k
in VD

Vector permute is very useful and is executed by a separate functional
unit

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 18 / 25

js@cs.lth.se

AltiVec Instructions: load/store 1(2)

Loads or stores a vector register

lvx vd, ra, rb fetches 16 bytes at address ra+rb into vd

Memory accesses discard the four last bits of the virtual address

the compiler either must know that a reference is aligned, or
two vectors must be loaded and shifted appropriately
next slides shows how this is done

AltiVec suffers a penalty if the compiler cannot control the alignment
of arrays

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 19 / 25

js@cs.lth.se

AltiVec instructions: load/store 2(2)

Assume we have the reference a[i] and we don’t know about its
alignment

Assume &a is in r1 and an offset is in r2.

We want to load a[i], a[i+1], a[i+2], and a[i+3] into v3.

lvx v0, r1, r2 // load lower part

addi r3, r1, 16 // address of upper part

lvx v1, r3, r2 // load upper part

lvsl v2, r1, r2 // produce vector for vperm

vperm v3, v0, v1, v2 // extract a[i..i+3] from of v0 # v1

// where # means concatenation

Sometimes the lvsl and one load can be moved out of the loop

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 20 / 25

js@cs.lth.se

AltiVec Instructions: vadd

vaddfp vd, va, vb vector add single-precision floating point
vaddsbs vd, va, vb vector add signed byte saturate
vaddshs vd, va, vb vector add signed half saturate
vaddsws vd, va, vb vector add signed word saturate
vaddubm vd, va, vb vector add unsigned byte modulo
vaddubs vd, va, vb vector add unsigned byte saturate
vadduhm vd, va, vb vector add unsigned half modulo
vadduhs vd, va, vb vector add unsigned half saturate
vadduwm vd, va, vb vector add unsigned word modulo
vadduws vd, va, vb vector add unsigned word saturate

There are numerous arithmetic instructions for different data types.

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 21 / 25

js@cs.lth.se

Vectorization on SSA Form in the LMPCC compiler

1 Initial optimizations on SSA form, eg copy and constant propagation

2 Construct the loop tree from the control flow graph

3 Rewrite pointer expressions to array references using the SSA graph

4 Identify statements in each basic block

5 Construct the data dependence graph and the dependence matrix

6 Perform unimodular transformations if useful.

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 22 / 25

js@cs.lth.se

Rewriting pointer references to array references 1(2)

for (i = 0; i < LENGTH - 1; i++) {

y += *ph-- * *px ;

*px-- = *px2-- ;

}

for (i = 0 ; i < LENGTH - 1; i++) {

y += h[-1 * i + 15] * x[-1 * i + 15];

x[-1 * i + 15] = x[-1 * i + 14];

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 23 / 25

js@cs.lth.se

Rewriting pointer references to array references 2(2)

for (i = 0 ; i < N ; i++, p_a++) {

*p_d = *p_c++ + *p_a++ * *p_b++ ;

*p_d++ -= *p_a * *p_b-- ;

*p_d = *p_c++ + *p_a-- * *p_b++ ;

*p_d++ += *p_a++ * *p_b++ ;

}

for (i = 0 ; i < N ; i++) {

d[2 * i] = c[2 * i] + a [2 * i] * b [2 * i];

d[2 * i] = d[2 * i] - a [2 * i + 1] * b [2 * i + 1];

d[2 * i + 1] = c[2 * i + 1] + a [2 * i + 1] * b [2 * i];

d[2 * i + 1] = d[2 * i + 1] + a [2 * i] * b [2 * i + 1];

}

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 24 / 25

js@cs.lth.se

The LMPCC SIMD Vectorizer

All arrays (except struct members) are aligned on 16 byte boundaries
— simplifies loading and storing of vectors

For non-aligned references still only one vector load is used
— the loading of two vectors is pipelined so that the upper vector
becomes the lower in the next iteration (or, vice versa, depending on
the direction of the array traversal)

When possible, LVSR/LVSL instructions are moved out of loops by
SSAPRE — the address of the first array element accessed is used
instead of the next element; this way the address is constant in the
loop

Rewriting of references to make alignment explicit — this way more
redundancy is exposed

Jonas Skeppstedt (js@cs.lth.se) Lecture 11 2016 25 / 25

js@cs.lth.se

