Optimizing Compilers Exercises 4

void h(int a, int b)

{
int X;
int Vs
if (a < b)
X = a * b;
else
X =a - b;
y = a * b;
return x * y;
X

Figure 1: Partial redundancy elimination example 1.

void h(int a, int b, int n)

{
int s = 0;
int i= 0;
do {
s += a * b;
i+=1;
} while (i < n);
return s;
}

Figure 2: Partial redundancy elimination example 2.

1. Show how SSAPRE optimizes the program in Figure 1.
2. Show how SSAPRE optimizes the program in Figure 2.

Solutions

1. The parts of the program relevant for SSAPRE are shown in Figure 3.
The major steps taken by SSAPRE to optimise the program are as follows.



a; < bl?

|
— T

r1 —ap X by ‘ €T3 — ...

Ty — P(x1,23)
Y1 < ag X by

Figure 3: Relevant parts translated to SSA-form.

(a) Insert ®-functions. They are inserted in the iterated dominance fron-
tiers of all evaluations of an expression plus all places where there is
a ¢-function for one of the operands of the expression. Note that
the ®-functions are should be put just after the last ¢-function in a
particular basic block. In our example, a ®-function is inserted in
the last basic block. See Figure 4.

a < bl? ‘

/

x1<—a1><b1 ‘
Ty« ¢(x1,73)
h<—<I>hh
y1<—a1><b1

Figure 4: After insertion of a ®-function.

(b) Rename. Conceptually, all variables are now renamed again just as in
translation to SSA-form (this is not done explicitly in a practical im-
plementation). In addition, the hyphotetical variable h is introduced.
There is an assignment to h at each evaluation of the expression. The
are three occurence types of an expression:



i. ®-occurence,
ii. Real occurence, and
iii. ®-operand occurence.

The dominator tree is traversed and each occurence of the expression
is inspected. The first occurence found is x; < a; X b;. Since the
expression stack of a x b is empty (if it was not empty, a new version
of h would be assigned if the operands don’t match, as explained in
the book), a new version of h is assigned and the real occurence is
pushed on the expression stack. The next occurence is the ®-operand
in the same basic block. The version of each operand matches those
of the expression on the top of expression stack (ie, a; X b1) so a
pointer from the operand to the real occurence is set. Leaving this
basic block, the expression stack is popped and now becomes empty.
We assume next that we visit the basic block with the ®-function
(we might just as well visit the block with x3 « ... first). At the
®-function, a new version of h is assigned and the & is pushed on the
stack. The next occurence to inspect is real occurence y; < a; X b;.
Since the versions of ¢ and b match those at the ®-function, a pointer
from the real occurencee to the ®-function is set. Next, the real
occurence is pushed on the expression stack. Since we now reach the
end of the program (or more properly the exit basic block) we check
to see whether there is a ®-function on the top of the expression stack.
There is not, but if there would have been one, it would have been
marked as not downsafe. Leaving this basic block, the expression
stack is popped and again (happens to) become empty.

In the last basic block to check, there is a ¢-function operand and it
is marked as | since there is no valid expression on the stack.

Propagation of not downsafe. No propagation is done here since the
only ®-function is downsafe.

Propagation of can_ be_ available. No propagation is done here since
there is only one ®-function, for which can_be available is set to
true.

Propagation of later. Since there is an operand of the ®-function
which is “has real use” (ie, the operand gets its value from a real
occurence), later is set to false for our ®-function.

Compute will _be_ available. It becomes true based on the attributes
of the ®-function: can_ be_ available and not later.

Finalise. Here the dominator tree is traversed again and the L
operand is replaced by a newly inserted a; x b; and the ®-function
will save the value of a; x b; in a temporary which will be used by
the real occurence following it, as described by Algorithm 13.3 in the
book.



510

i1<—0

S2 ¢(81,83)

iy ¢(i1,13)

S3 «— S+ aj X by
i3 «— 11+ 1

13 < Ny ?

yes

no

return s;

Figure 5: Program in Figure 2 translated to SSA form.

2. The major steps taken by SSAPRE to optimise the program in Figure 2
with respect to the expression a x b are as follows.

(a)

(b)

Insert ®-functions. There is a real occurence in the loop and the
dominance frontier of this vertex is that vertex itself. So, a ¢-function
is inserted after the ¢-functions. See Figure 6.

Rename. When traversing the dominator tree, the first occurence
reached is the ®-function operand in the first basic block. The Ex-
pression stack for a x b is empty so the operand is L.

In the loop vertex, the first occurence is the ®-function, for which a
new version of h is assigned, and the ®-function is pushed on the ex-
pression stack. Next the only real occurence is checked. The operands
have not been modified since the ®-function, so a pointer from the
real occurence to the ®-function is set and no new version of h is as-
signed. The real occurence is pushed on the stack. The last occurence
checked in this vertex is the ®-function operand corresponding to the
flow graph arc denoted yes. This operand has a real use (on the top
of the stack) and so a pointer is set to it. Nothing happens in the
last vertex.

Propagation of not downsafe. No propagation is done here since the
only ®-function is downsafe (it was not marked downsafe when we
reached the last vertex).

Propagation of can_ be_ available. No propagation is done here since
there is only one ®-function, for which can_be_awvailable is set to
true, since it is downsafe.



()

510

i1<—0

S2 ¢(81, 53)
iz — P(i1,13)
h «— ®(h,h)
83 «— So+ay X by
i3 «— 11+ 1
i3 < Ny ?

yes

no

return s,

Figure 6: Program in Figure 5 after ® insertion.

Propagation of later. Since there is an operand of the ®-function
which is “has real use” (ie, the operand gets its value from a real
occurence), later is set to false for our ®-function.

Compute will be available. It becomes true based on the attributes
of the ®-function: can_be available and not later.

Finalise. Here the dominator tree is traversed again and the L
operand is replaced by a newly inserted a; x b; and the ®-function
will save the value of a1 x b; in a temporary which will be used by the
real occurence following it, again as described by Algorithm 13.3 in
the book. The result is seen in Figure 7. Note that the ¢-function for
h actually can be removed, but that is done by another optimisation.



s1 0
il — 0

h1<—a1><b1

s — ¢(s1,53)
iz — ¢(i1,13)
ho < ¢(h1, h2)
83 + 52+ ha

i3 «— 11+ 1

13 < Ny ?

yes
no

return s;

Figure 7: Program in Figure 6 after finalise.



